• Photonics Research
  • Vol. 12, Issue 1, 260 (2024)
Sergey Alyshev1, Alexander Vakhrushev1, Aleksandr Khegai1, Elena Firstova1, Konstantin Riumkin1, Mikhail Melkumov1, Lyudmila Iskhakova1, Andrey Umnikov2, and Sergei Firstov1、*
Author Affiliations
  • 1Prokhorov General Physics Institute of the Russian Academy of Sciences, Dianov Fiber Optics Research Center, 119333 Moscow, Russia
  • 2Devyatykh Institute of Chemistry of High-Purity Substances of the Russian Academy of Sciences, 603951 Nizhny Novgorod, Russia
  • show less
    DOI: 10.1364/PRJ.498782 Cite this Article Set citation alerts
    Sergey Alyshev, Alexander Vakhrushev, Aleksandr Khegai, Elena Firstova, Konstantin Riumkin, Mikhail Melkumov, Lyudmila Iskhakova, Andrey Umnikov, Sergei Firstov. Impact of doping profiles on the formation of laser-active centers in bismuth-doped GeO2–SiO2 glass fibers[J]. Photonics Research, 2024, 12(1): 260 Copy Citation Text show less
    References

    [1] A. Ferrari, A. Napoli, N. Costa. Multi-band optical systems to enable ultra-high speed transmissions. European Conference on Lasers and Electro-Optics, ci_2_3(2019).

    [2] A. Ellis, N. M. Suibhne, D. Saad. Communication networks beyond the capacity crunch. Philos. Trans. R. Soc. A, 374, 20150191(2016).

    [3] K. D. Assis, A. F. dos Santos, R. C. Almeida. Hybrid strategy for routing, modulation and spectrum assignment in elastic optical networks. Opt. Quantum Electron., 53, 611(2021).

    [4] A. Chralyvy. Plenary paper: the coming capacity crunch. 35th European Conference on Optical Communication(2009).

    [5] J. K. Fischer, M. Cantono, V. Curri. Maximizing the capacity of installed optical fiber infrastructure via wideband transmission. 20th International Conference on Transparent Optical Networks (ICTON), 1-4(2018).

    [6] D. J. Elson, Y. Wakayama, V. Mikhailov. 9.6-THz single fibre amplifier O-band coherent DWDM transmission. Optical Fiber Communications Conference and Exhibition (OFC), 1-3(2023).

    [7] A. Donodin, M. Tan, P. Hazarika. 30-GBaud DP 16-QAM transmission in the E-band enabled by bismuth-doped fiber amplifiers. Opt. Lett., 47, 5152-5155(2022).

    [8] F. Maes, M. Sharma, L. Wang. High power BDF/EDF hybrid amplifier providing 27 dB gain over 90 nm in the E+ S band. Optical Fiber Communication Conference, Th4C-8(2022).

    [9] L. Wang, Y. Fung, M. Sharma. Bandwidth-dependent gain deviation in E+S band bismuth doped fiber amplifier under automatic gain control. Optical Fiber Communication Conference, Th3C-3(2023).

    [10] Y. Hong, N. Taengnoi, K. R. Bottrill. Experimental demonstration of single-span 100-km O-band 4×50-Gb/s CWDM direct-detection transmission. Opt. Express, 30, 32189-32203(2022).

    [11] V. Mikhailov, J. Luo, D. Inniss. Amplified transmission beyond C- and L- bands: bismuth doped fiber amplifier for O-band transmission. J. Lightwave Technol., 40, 3255-3262(2022).

    [12] S. V. Firstov, A. M. Khegai, A. V. Kharakhordin. Compact and efficient O-band bismuth-doped phosphosilicate fiber amplifier for fiber-optic communications. Sci. Rep., 10, 11347(2020).

    [13] N. Wang, J. Li, D. Zhang. Real-time 50 Gb/s upstream transmission in TDM-PON with class E1 power budget using Ge/Si avalanche photodiode and bismuth-doped fiber as preamplifier. Optical Fiber Communications Conference and Exhibition (OFC), 1-3(2023).

    [14] Y. Wang, A. Halder, D. Richardson. A highly temperature-insensitive Bi-doped fiber amplifier in the E+S-band with 20 dB flat gain from 1435–1475 nm. Optical Fiber Communication Conference, Th3C-2(2023).

    [15] Y. Ososkov, A. Khegai, S. Firstov. Pump-efficient flattop O+E-bands bismuth-doped fiber amplifier with 116 nm–3 dB gain bandwidth. Opt. Express, 29, 44138-44145(2021).

    [16] L. Sirleto, M. A. Ferrara. Fiber amplifiers and fiber lasers based on stimulated Raman scattering: a review. Micromachines, 11, 247(2020).

    [17] M. Wasfi. Optical fiber amplifiers-review. Int. J. Commun. Netw. Inf. Security, 1, 42-47(2009).

    [18] S. V. Firstov, S. V. Alyshev, K. E. Riumkin. A 23-dB bismuth-doped optical fiber amplifier for a 1700-nm band. Sci. Rep., 6, 28939(2016).

    [19] N. Thipparapu, Y. Wang, S. Wang. Bi-doped fiber amplifiers and lasers. Opt. Mater. Express, 9, 2446-2465(2019).

    [20] I. A. Bufetov, M. A. Melkumov, S. V. Firstov. Bi-doped optical fibers and fiber lasers. IEEE J. Sel. Top. Quantum Electron., 20, 111-125(2014).

    [21] E. M. Dianov, S. V. Firstov, V. F. Khopin. Bi-doped fibre lasers and amplifiers emitting in a spectral region of 1.3 μm. Quantum Electron., 38, 615(2008).

    [22] S. Firstov, I. Bufetov, V. Khopin. 2 W bismuth doped fiber lasers in the wavelength range 1300–1500 nm and variation of Bi-doped fiber parameters with core composition. Laser Phys. Lett., 6, 665-670(2009).

    [23] A. Vakhrushev, A. Khegai, S. Alyshev. Cladding pumped bismuth-doped fiber amplifiers operating in O-, E-, and S-telecom bands. Opt. Lett., 48, 1339-1342(2023).

    [24] Y. Wang, S. Wang, A. Halder. (INVITED) Bi-doped optical fibers and fiber amplifiers. Opt. Mater. X, 17, 100219(2023).

    [25] V. Sokolov, V. Plotnichenko, E. Dianov. The origin of near-IR luminescence in bismuth-doped silica and germania glasses free of other dopants: first-principle study. Opt. Mater. Express, 3, 1059-1074(2013).

    [26] S. Firstov, V. Khopin, I. Bufetov. Combined excitation-emission spectroscopy of bismuth active centers in optical fibers. Opt. Express, 19, 19551-19561(2011).

    [27] A. Khegai, S. Alyshev, A. Vakhrushev. Recent advances in Bi-doped silica-based optical fibers: a short review. J. Non-Cryst. Solids X, 16, 100126(2022).

    [28] E. M. Dianov. Bismuth-doped optical fibers: a challenging active medium for near-IR lasers and optical amplifiers. Light Sci. Appl., 1, e12(2012).

    [29] A. Khegai, S. Firstov, K. Riumkin. Radial distribution and absorption cross section of active centers in bismuth-doped phosphosilicate fibers. Opt. Express, 28, 29335-29344(2020).

    [30] S. V. Firstov, E. G. Firstova, A. V. Kharakhordin. Anti-stokes luminescence in bismuth-doped high-germania core fibres. Quantum Electron., 49, 237(2019).

    [31] I. Razdobreev, H. El Hamzaoui, V. Y. Ivanov. Optical spectroscopy of bismuth-doped pure silica fiber preform. Opt. Lett., 35, 1341-1343(2010).

    [32] E. G. Firstova, I. Bufetov, V. F. Khopin. Luminescence properties of IR-emitting bismuth centres in SiO2-based glasses in the UV to near-IR spectral region. Quantum Electron., 45, 59(2015).

    [33] I. Razdobreev, H. El Hamzaoui, L. Bigot. Optical properties of bismuth-doped silica core photonic crystal fiber. Opt. Express, 18, 19479-19484(2010).

    [34] Y. Fujimoto, Y. Hirata, Y. Kuwada. Effect of GeO2 additive on fluorescence intensity enhancement in bismuth-doped silica glass. J. Mater. Res., 22, 565-568(2007).

    [35] E. Friebele, D. Griscom, G. Sigel. Defect centers in a germanium-doped silica-core optical fiber. J. Appl. Phys., 45, 3424-3428(1974).

    Sergey Alyshev, Alexander Vakhrushev, Aleksandr Khegai, Elena Firstova, Konstantin Riumkin, Mikhail Melkumov, Lyudmila Iskhakova, Andrey Umnikov, Sergei Firstov. Impact of doping profiles on the formation of laser-active centers in bismuth-doped GeO2–SiO2 glass fibers[J]. Photonics Research, 2024, 12(1): 260
    Download Citation