• Journal of Semiconductors
  • Vol. 40, Issue 6, 062001 (2019)
Naili Yue1, Joshua Myers2, Liqin Su1, Wentao Wang3, Fude Liu3, Raphael Tsu1, Yan Zhuang2, and Yong Zhang1
Author Affiliations
  • 1Department of Electrical and Computer Engineering, The University of North Carolina at Charlotte, Charlotte, North Carolina 28223, USA
  • 2Department of Electrical Engineering, Wright State University, Dayton, OH 45435, USA
  • 3Department of Mechanical Engineering, The University of Hong Kong, Hong Kong, China
  • show less
    DOI: 10.1088/1674-4926/40/6/062001 Cite this Article
    Naili Yue, Joshua Myers, Liqin Su, Wentao Wang, Fude Liu, Raphael Tsu, Yan Zhuang, Yong Zhang. Growth of oxidation-resistive silicene-like thin flakes and Si nanostructures on graphene[J]. Journal of Semiconductors, 2019, 40(6): 062001 Copy Citation Text show less
    References

    [1] G G Guzm-Verri, L C Lew Yan Voon. Electronic structure of silicon-based nanostructures. Phys Rev B, 76, 075131(2007).

    [2] P Vogt, P De Padova, C Quaresima et al. Silicene: compelling experimental evidence for graphenelike two-dimensional silicon. Phys Rev Lett, 108, 155501(2012).

    [3] A Fleurence, R Friedlein, T Ozaki et al. Experimental evidence for epitaxial silicene on diboride thin Films. Phys Rev Lett, 108, 245501(2012).

    [4] E Cinquanta, E. Scalise, D Chiappe et al. Getting through the nature of silicene: an sp2-sp3 two-dimensional silicon nanosheet. J Phys Chem C, 117, 16719(20113).

    [5] J A Yan, R Stein, D M Schaefer et al. Electron-phonon coupling in two-dimensional silicene and germanene. Phys Rev B, 88, 121403(2013).

    [6] E Scalise, M Houssa, G Pourtois et al. Vibrational properties of silicene and germanene. Nano Res, 6, 19(2013).

    [7] D Solonenko, O Gordan, G L Lay et al. 2D vibrational properties of epitaxial silicene on Ag(111). 2D Mater, 4, 015008(2017).

    [8] J Zhuang, X Xu, Y Du et al. Investigation of electron–phonon coupling in epitaxial silicene by in situ Raman spectroscopy. Phys Rev B, 91, 161409(2015).

    [9] S Sheng, J B Wu, X Cong et al. Vibrational properties of a monolayer silicene sheet studied by tip-enhanced Raman spectroscopy. Phys Rev Lett, 119, 196803(2017).

    [10] J B Wu, M L Lin, X Cong et al. Raman spectroscopy of graphene-based materials and its applications in related devices. Chem Soc Rev, 47, 1822(2018).

    [11] P De Padova, C Ottaviani, C Quaresima et al. 24 h stability of thick multilayer silicene in air. 2D Mater, 1, 021003(2014).

    [12] Y Zhang, R Tsu. Binding graphene sheets together using silicon: graphene/silicon superlattice. Nanoscale Res Lett, 5, 805(2010).

    [13] R Neuendorf, R E Palmer, R Smith. Low energy deposition of size-selected Si clusters onto graphite. Chem Phys Lett, 333, 304(2001).

    [14] Y Cai, C P Chuu, C M Wei et al. Stability and electronic properties of two-dimensional silicene and germanene on graphene. Phys Rev B, 88, 245408(2013).

    [15] S Yu, X D Li, S Q Wu et al. Novel electronic structures of superlattice composed of graphene and silicene. Mater Res Bull, 50, 268(2014).

    [16] S Fahy, S G Louie, M L Cohen. Pseudopotential total-energy study of the transition from rhombohedral graphite to diamond. Phys Rev B, 34, 1191(1986).

    [17] J Wang, Y Zhang. Topologic connection between 2-D layered structures and 3-D diamond structures for conventional semiconductors. Sci Rep, 6, 24660(2016).

    [18]

    [19] M De Crescenzi, I Berbezier, M Scarselli et al. Formation of silicene nanosheets on graphite. ACS Nano, 10, 11163(2016).

    [20] Y Li, H Wang, L Xie et al. MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J Am Cheml Soc, 133, 7296(2011).

    [21] M M Ugeda, A J Bradley, S F Shi et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat Mater, 13, 1091(2014).

    [22] C W Teplin, M P Paranthaman, T R Fanning et al. Heteroepitaxial film crystal silicon on Al2O3: new route to inexpensive crystal silicon photovoltaics. Energy Environ Sci, 4, 3346(2011).

    [23] K Zhang, J H Seo, W D Zhou et al. Fast flexible electronics using transferrable silicon nanomembranes. J Phys D, 45, 143001(2012).

    [24] B Marsen, K Sattler. Fullerene-structured nanowires of silicon. Phys Rev B, 60, 11593(1999).

    [25] K G Nath, I Shimoyama, T Sekiguchi et al. Chemical-state analysis for low-dimensional Si and Ge films on graphite. J Appl Phys, 94, 4583(2003).

    [26]

    [27] G Beaucarne, S Bourdais, A Slaoui et al. Impurity diffusion from uncoated foreign substrates during high temperature CVD for thin-film Si solar cells. Sol Energy Mater Sol Cells, 61, 301(2000).

    [28] L Wang, H L Tu, S W Zhu et al. Dispersed Si nanoparticles with narrow photoluminescence peak prepared by laser ablated deposition. Chin J Nonferrous Metals, 20, 724(2010).

    [29] Y Baba, I Shimoyama, N Hirao et al. Structure of ultra-thin silicon film on HOPG studied by polarization-dependence of X-ray absorption fine structure. Chem Phys Lett, 594, 64(2014).

    [30] K Evanoff, A Magasinski, J Yang et al. Nanosilicon-coated graphene granules as anodes for Li-ion batteries. Adv Energy Mater, 1, 495(2011).

    [31] L Su, Y Zhang, Y Yu et al. Dependence of coupling of quasi 2-D MoS2 with substrates on substrate types, probed by temperature dependent Raman scattering. Nanoscale, 6, 4920(2014).

    [32] L Su, Y Yu, L Cao et al. Effects of substrate type and material-substrate bonding on high-temperature behavior of monolayer WS2. Nano Res, 8, 2686(2015).

    [33] L Su, Y Yu, L Cao et al. In situ in situ monitoring of the thermal-annealing effect in a monolayer of MoS2. Phys Rev Appl, 7, 034009(2017).

    [34] L X Li, W P Han, W. J B Wu et al. Layer-number dependent optical properties of 2D materials and their application for thickness determination. Adv Funct Mater, 27, 1604468(2017).

    [35] V K Malinovsky, V N Novikov, N V Surovtsev et al. Investigation of amorphous states of SiO2 by Raman scattering spectroscopy. Phys Solid State, 42, 65(2000).

    [36] M Ivanda, R Clasen, M Hornfeck et al. Raman spectroscopy on SiO2 glasses sintered from nanosized particles. J Non-Cryst Solids, 322, 46(2003).

    [37] S I Raider, R Flitsch, M J Palmer. Oxide growth on etched silicon in air at room temperature. J Electrochem Soc, 122, 413(1975).

    [38] J D Ryckman, R A Reed, R A Weller et al. Enhanced room temperature oxidation in silicon and porous silicon under 10 keV X-ray irradiation. J Appl Phys, 108, 113528(2010).

    [39] S Tongay, T Schumann, A F Hebard. Graphite based Schottky diodes formed on Si, GaAs, and 4H-SiC substrates. Appl Phys Lett, 95, 222103(2009).

    [40] D Sinha, J U Lee. Ideal graphene/silicon schottky junction diodes. Nano Lett, 14, 4660(2014).

    [41]

    [42] Z X Guo, Y Y Zhang, H Xiang et al. Structural evolution and optoelectronic applications of multilayer silicene. Phys Rev B, 92, 201413(2015).

    [43] H A Mizes, S I Park, W A Harrison. Multiple-tip interpretation of anomalous scanning-tunneling-microscopy images of layered materials. Phys Rev B, 36, 4491(1987).

    [44] S Hembacher, F J Giessibl, J Mannhart et al. Revealing the hidden atom in graphite by low-temperature atomic force microscopy. Proc Natl Acad Sci, 100, 12539(2003).

    [45] H Neddermeyer. Scanning tunnelling microscopy of semiconductor surfaces. Rep Prog Phys, 59, 701(1996).

    [46] Y Zhang, G M Dalpian, B Fluegel et al. Novel approach to tuning the physical properties of organic-inorganic hybrid semiconductors. Phys Rev Lett, 96, 026405(2006).

    [47] N Yue, Y Zhang, R Tsu. Ambient condition laser writing of graphene structures on polycrystalline SiC thin film deposited on Si wafer. Appl Phys Lett, 102, 071912(2013).

    Naili Yue, Joshua Myers, Liqin Su, Wentao Wang, Fude Liu, Raphael Tsu, Yan Zhuang, Yong Zhang. Growth of oxidation-resistive silicene-like thin flakes and Si nanostructures on graphene[J]. Journal of Semiconductors, 2019, 40(6): 062001
    Download Citation