• Laser & Optoelectronics Progress
  • Vol. 58, Issue 15, 1516003 (2021)
Xinquan Zhou1 and Zhiguo Xia1、2、*
Author Affiliations
  • 1State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Fiber Laser Materials and Applied Techniques, School of Materials Science and Engineering, South China University of Technology, Guangzhou , Guangdong 510641, China
  • 2School of Physics and Optoelectronics, South China University of Technology, Guangzhou , Guangdong 510641, China
  • show less
    DOI: 10.3788/LOP202158.1516003 Cite this Article Set citation alerts
    Xinquan Zhou, Zhiguo Xia. Recent Advances of Energy-Trap-Dependent Multimodal Inorganic Luminescent Materials[J]. Laser & Optoelectronics Progress, 2021, 58(15): 1516003 Copy Citation Text show less
    References

    [1] Jiang T, Zhu Y F, Zhang J C et al. Multistimuli-responsive display materials to encrypt differentiated information in bright and dark fields[J]. Advanced Functional Materials, 29, 1906068(2019).

    [2] Feng L, Xiang L L, Zhang J C. Luminescence properties of BaGa2Si2O8∶Eu2+, Eu3+, Pr3+ for anticounterfeiting and encryption[J]. Chinese Journal of Luminescence, 41, 510-518(2020).

    [3] Zhang Y, Huang R, Li H L et al. Triple-mode emissions with invisible near-infrared after-glow from Cr3+-doped zinc aluminum germanium nanoparticles for advanced anti-counterfeiting applications[J]. Small, 16, 2003121(2020).

    [4] Yang Q T, Renagul A, Yan Y et al. Brief introduction of Cr3+-doped persistent luminescence nanoparticles in biomedical applied research[J]. Laser & Optoelectronics Progress, 58, 0800003(2021).

    [5] Renagul A, Yang T S, Liu W G et al. Synthesis and photoluminescence properties of Zn1+xGa2-0.01-yGexO3x+4∶0.01Cr, yBi[J]. Laser & Optoelectronics Progress, 58, 2116001(2021).

    [6] Xie Y L, Shen B, Zhou B S et al. Progress in research on rare-earth upconversion luminescent nanomaterials and bio-sensing[J]. Chinese Journal of Lasers, 47, 0207017(2020).

    [7] Li J M, Liu Z Q, Wei T B et al. Development summary of semiconductor lighting in China[J]. Acta Optica Sinica, 41, 0116002(2021).

    [8] Zhuang Y X, Wang L, Lü Y et al. Optical data storage and multicolor emission readout on flexible films using deep-trap persistent luminescence materials[J]. Advanced Functional Materials, 28, 1705769(2018).

    [9] Wang C L, Jin Y H, Lü Y et al. Trap distribution tailoring guided design of super-long-persistent phosphor Ba2SiO4∶Eu2+, Ho3+ and photostimulable luminescence for optical information storage[J]. Journal of Materials Chemistry C, 6, 6058-6067(2018).

    [10] Gao Y, Li R F, Zheng W et al. Broadband NIR photostimulated luminescence nanoprobes based on CaS∶Eu2+, Sm3+ nanocrystals[J]. Chemical Science, 10, 5452-5460(2019).

    [11] Zhang J C, Pan C, Zhu Y F et al. Achieving thermo-mechano-opto-responsive bitemporal colorful luminescence via multiplexing of dual lanthanides in piezoelectric particles and its multidimensional anticounterfeiting[J]. Advanced Materials, 30, e1804644(2018).

    [12] Yuan L F, Jin Y H, Su Y et al. Optically stimulated luminescence materials: optically stimulated luminescence phosphors: principles, applications, and prospects[J]. Laser & Photonics Reviews, 14, 2070068(2020).

    [13] Wang C L, Jin Y H, Yuan L F et al. A spatial/temporal dual-mode optical thermometry platform based on synergetic luminescence of Ti4+-Eu3+ embedded flexible 3D micro-rod arrays: high-sensitive temperature sensing and multi-dimensional high-level secure anti-counterfeiting[J]. Chemical Engineering Journal, 374, 992-1004(2019).

    [14] Li Y, Gecevicius M, Qiu J R. Long persistent phosphors: from fundamentals to applications[J]. Chemical Society Reviews, 45, 2090-2136(2016).

    [15] Xu J, Tanabe S. Persistent luminescence instead of phosphorescence: history, mechanism, and perspective[J]. Journal of Luminescence, 205, 581-620(2019).

    [16] Liu F, Liang Y J, Pan Z W. Detection of up-converted persistent luminescence in the near infrared emitted by the Zn3Ga2GeO8∶‍Cr3+, Yb3+, Er3+ phosphor[J]. Physical Review Letters, 113, 177401(2014).

    [17] Chen X Z, Li Y, Huang K et al. Trap energy upconversion-like near-infrared to near-infrared light rejuvenateable persistent luminescence[J]. Advanced Materials, 33, e2008722(2021).

    [18] Liu D, Yuan L F, Jin Y H et al. Tailoring multidimensional traps for rewritable multilevel optical data storage[J]. ACS Applied Materials & Interfaces, 11, 35023-35029(2019).

    [19] Zhuang Y X, Lü Y, Wang L et al. Trap depth engineering of SrSi2O2N2∶Ln2+, Ln3+ (Ln2+=Yb, Eu; Ln3+=Dy, Ho, Er) persistent luminescence materials for information storage applications[J]. ACS Applied Materials & Interfaces, 10, 1854-1864(2018).

    [20] Liu F, Yan W Z, Chuang Y J et al. Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8[J]. Scientific Reports, 3, 1554(2013).

    [21] Lin S S, Lin H, Huang Q M et al. A photostimulated BaSi2O5∶Eu2+, Nd3+ phosphor-in-glass for erasable-rewritable optical storage medium[J]. Laser & Photonics Reviews, 13, 1900006(2019).

    [22] Lin S S, Lin H, Ma C G et al. High-security-level multi-dimensional optical storage medium: nanostructured glass embedded with LiGa5O8∶Mn2+ with photostimulated luminescence[J]. Light: Science & Applications, 9, 22(2020).

    [23] Ou X Y, Qin X, Huang B L et al. High-resolution X-ray luminescence extension imaging[J]. Nature, 590, 410-415(2021).

    [24] le Masne de Chermont Q, Chanéac C, Seguin J et al. Nanoprobes with near-infrared persistent luminescence for in vivo imaging[J]. Proceedings of the National Academy of Sciences of the United States of America, 104, 9266-9271(2007).

    [25] Maldiney T, Bessière A, Seguin J et al. The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells[J]. Nature Materials, 13, 418-426(2014).

    [26] Li Z J, Zhang Y W, Wu X et al. In vivo repeatedly charging near-infrared-emitting mesoporous SiO2/ZnGa2O4∶Cr3+ persistent luminescence nanocomposites[J]. Advanced Science, 2, 1500001(2015).

    [27] Arppe R, Sørensen T J. Physical unclonable functions generated through chemical methods for anti-counterfeiting[J]. Nature Reviews Chemistry, 1, 0031(2017).

    [28] Zhang J C, Gao N, Li L et al. Discovering and dissecting mechanically excited luminescence of Mn2+ activators via matrix microstructure evolution[J]. Advanced Functional Materials, 31, 2100221(2021).

    [29] Shi C, Hou X B, Shen X Y et al. Multiresponsive luminescence materials: richer color than chameleon materials[J]. Advanced Optical Materials, 8, 2000007(2020).

    [30] Wang Z B, Ma Z D, Liu W S et al. Multi-mode luminescent color self-evolution in one phosphor with energy storage activity for high-level information safety[J]. Materials Chemistry Frontiers, 5, 2877-2886(2021).

    [31] Zhuang Y X, Xie R J. Mechanoluminescence rebrightening the prospects of stress sensing: a review[J]. Advanced Materials, e2005925(2021).

    [32] Sedlmeier A, Achatz D E, Fischer L H et al. Photon upconverting nanoparticles for luminescent sensing of temperature[J]. Nanoscale, 4, 7090-7096(2012).

    [33] Tu D, Xu C N, Yoshida A et al. LiNbO3:Pr3+: a multipiezo material with simultaneous piezoelectricity and sensitive piezoluminescence[J]. Advanced Materials, 29, 1606914(2017).

    [34] Kim J S, Kwon Y N, Shin N et al. Mechanoluminescent SrAl2O4∶Eu, Dy phosphor for use in visualization of quasidynamic crack propagation[J]. Applied Physics Letters, 90, 241916(2007).

    [35] Zhuang Y X, Tu D, Chen C J et al. Force-induced charge carrier storage: a new route for stress recording[J]. Light, Science & Applications, 9, 182(2020).

    [36] Chen C J, Zhuang Y X, Li X Y et al. Achieving remote stress and temperature dual-modal imaging by double-lanthanide-activated mechanoluminescent materials[J]. Advanced Functional Materials, 2101567(2021).

    [37] Yan S Y, Liu F, Zhang J H et al. Persistent emission of narrowband ultraviolet-B light upon blue-light illumination[J]. Physical Review Applied, 13, 044051(2020).

    [38] Wang X L, Chen Y F, Liu F et al. Solar-blind ultraviolet-C persistent luminescence phosphors[J]. Nature Communications, 11, 2040(2020).

    Xinquan Zhou, Zhiguo Xia. Recent Advances of Energy-Trap-Dependent Multimodal Inorganic Luminescent Materials[J]. Laser & Optoelectronics Progress, 2021, 58(15): 1516003
    Download Citation