• Acta Optica Sinica
  • Vol. 40, Issue 10, 1014004 (2020)
Zhiyong Shi1, Liqiang Zhou1, Lichun Zhang1, Zhigang Li1, Qiang Shi1、2, and Linwei Zhu1、*
Author Affiliations
  • 1School of Physics and Optoelectronics Engineering, Ludong University, Yantai, Shandong 264025, China
  • 2Beijing Magie Nano-Technology Co. Ltd., Beijing 102208, China
  • show less
    DOI: 10.3788/AOS202040.1014004 Cite this Article Set citation alerts
    Zhiyong Shi, Liqiang Zhou, Lichun Zhang, Zhigang Li, Qiang Shi, Linwei Zhu. Dynamic Laser Parallel Fabrication Based on Multifocal Array[J]. Acta Optica Sinica, 2020, 40(10): 1014004 Copy Citation Text show less
    References

    [1] Zhu S J, Zhang C Y, Chu S L et al. Research and application of massive microporous water assisted picosecond laser processing technology[J]. Chinese Journal of Lasers, 47, 0302002(2020).

    [2] Cheng J, Cao J L, Zhang H C et al. Preparation of pump-free transport trajectory on infiltration controllable surface using ultrafast laser[J]. Chinese Journal of Lasers, 46, 1102012(2019).

    [3] Liao J N, Wang X D, Zhou X W et al. Femtosecond laser direct writing of copper microelectrodes[J]. Chinese Journal of Lasers, 46, 1002013(2019).

    [4] Dong H Y, Liu C N, Sun S M et al. Optical fiber high-temperature and refractive index sensor fabricated by femtosecond laser[J]. Laser & Optoelectronics Progress, 56, 170633(2019).

    [5] Qin X Y, Huang T, Xiao R S. Periodic microstructure on Ti surface induced by high-power green femtosecond laser[J]. Chinese Journal of Lasers, 46, 1002006(2019).

    [6] Chen P, Wang Y F, Dai Z J et al. Large-area laser marking methods based on femtosecond laser filamentation[J]. Chinese Journal of Lasers, 46, 0508019(2019).

    [7] Hu D J, Lu Y D, Cao Y Y et al. Laser-splashed three-dimensional plasmonic nanovolcanoes for steganography in angular anisotropy[J]. ACS Nano, 12, 9233-9239(2018).

    [8] Zhang Y N, Shi L, Hu D J et al. Full-visible multifunctional aluminium metasurfaces by in situ anisotropic thermoplasmonic laser printing[J]. Nanoscale Horizons, 4, 601-609(2019).

    [9] Li X P, Ren H R, Chen X et al. Athermally photoreduced graphene oxides for three-dimensional holographic images[J]. Nature Communications, 6, 6984(2015).

    [10] Li X P, Cao Y Y, Tian N et al. Multifocal optical nanoscopy for big data recording at 30 TB capacity and gigabits/second data rate[J]. Optica, 2, 567-570(2015).

    [11] Florian C, Puerto D, Fuentes-Edfuf Y et al. Fabrication of novel biomimetic structures on steel via femtosecond laser over-scans. [C]//Conference on Lasers and Electro-Optics, May 14-19,2017,San Jose, California,USA. Washington: OSA, STh4J, 3(2017).

    [12] Fang Z W, Su Y H, Wang C W et al. Analysis and set up of optical system for holographic femtosecond laser processing[J]. Acta Optica Sinica, 34, 0222002(2014).

    [13] Chen Q D, Wu D, Niu L G et al. Phase lenses and mirrors created by laser micronanofabrication via two-photon photopolymerization[J]. Applied Physics Letters, 91, 171105(2007).

    [14] Xia H, Wang J, Tian Y et al. Ferrofluids for fabrication of remotely controllable micro-nanomachines by two-photon polymerization[J]. Advanced Materials, 22, 3204-3207(2010).

    [15] Zhu W, Li J X, Leong Y J et al. 3D-printed artificial microfish[J]. Advanced Materials, 27, 4411-4417(2015).

    [16] Rao S L, Wu P C, Zhang C C et al. Energy-controllable femtosecond laser fabrication based on spatial light modulator[J]. Chinese Journal of Lasers, 44, 0102008(2017).

    [17] Hu Y T, Zhai Z S, Lü Q H et al. Parallel processing with femtosecond laser using spatial light modulator[J]. Journal of Applied Optics, 37, 315-320(2016).

    [18] Hayasaki Y, Sugimoto T, Takita A et al. Variable holographic femtosecond laser processing by use of a spatial light modulator[J]. Applied Physics Letters, 87, 031101(2005).

    [19] Wang C W, Su Y H, Wang J L et al. Method for holographic femtosecond laser parallel processing using digital blazed grating and the divergent spherical wave[J]. Optical Engineering, 54, 016109(2015).

    [20] Zhang C C, Hu Y L, Li J W et al. An improved multi-exposure approach for high quality holographic femtosecond laser patterning[J]. Applied Physics Letters, 105, 221104(2014).

    [21] Kim D, Keesling A, Omran A et al. Large-scale uniform optical focus array generation with a phase spatial light modulator[J]. Optics Letters, 44, 3178-3181(2019).

    [22] Zhang G L, Gao X Z, Pan Y et al. Inverse method to engineer uniform-intensity focal fields with arbitrary shape[J]. Optics Express, 26, 16782-16796(2018).

    [23] Leonardo R D, Ianni F, Ruocco G. Computer generation of optimal holograms for optical trap arrays[J]. Optics Express, 15, 1913-1922(2007).

    [24] Wolf E. Electromagnetic diffraction in optical systems——I. An integral representation of the image field[J]. Proceedings of the Royal Society A, 253, 349-357(1959).

    [25] Richards B, Wolf E. Electromagnetic diffraction in optical systems——II. Structure of the image field in an aplanatic system[J]. Proceedings of the Royal Society A, 253, 358-379(1959).

    [26] Leutenegger M, Rao R, Leitgeb R A et al. Fast focus field calculations[J]. Optics Express, 14, 11277-11291(2006).

    [27] Zhu L W, Sun M Y, Zhang D W et al. Multifocal array with controllable polarization in each focal spot[J]. Optics Express, 23, 24688-24698(2015).

    [28] You S T, Kuang C F, Toussaint K C et al. Iterative phase-retrieval method for generating stereo array of polarization-controlled focal spots[J]. Optics Letters, 40, 3532-3535(2015).

    Zhiyong Shi, Liqiang Zhou, Lichun Zhang, Zhigang Li, Qiang Shi, Linwei Zhu. Dynamic Laser Parallel Fabrication Based on Multifocal Array[J]. Acta Optica Sinica, 2020, 40(10): 1014004
    Download Citation