• Advanced Photonics
  • Vol. 5, Issue 3, 034001 (2023)
Zeyang Liu1、†, Danyan Wang, Hao Gao, Moxin Li, Huixian Zhou, and Cheng Zhang*
Author Affiliations
  • Huazhong University of Science and Technology, School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics, Wuhan, China
  • show less
    DOI: 10.1117/1.AP.5.3.034001 Cite this Article Set citation alerts
    Zeyang Liu, Danyan Wang, Hao Gao, Moxin Li, Huixian Zhou, Cheng Zhang. Metasurface-enabled augmented reality display: a review[J]. Advanced Photonics, 2023, 5(3): 034001 Copy Citation Text show less
    References

    [1] T. Zhan et al. Augmented reality and virtual reality displays: perspectives and challenges. iScience, 23, 101397(2020).

    [2] J. Xiong et al. Augmented reality and virtual reality displays: emerging technologies and future perspectives. Light Sci. Appl., 10, 216(2021).

    [3] H. Hua, B. Javidi. Augmented reality easy on the eyes. Opt. Photonics News, 26, 26-33(2015).

    [4] O. Cakmakci, J. Rolland. Head-worn displays: a review. J. Disp. Technol., 2, 199-216(2006).

    [5] R. Azuma et al. Recent advances in augmented reality. IEEE Comput. Graphics Appl., 21, 34-47(2001).

    [6] D. W. F. van Krevelen, R. Poelman. A survey of augmented reality technologies, applications and limitations. Int. J. Virtual Real., 9, 1-20(2010).

    [7] D. Cheng et al. Design and manufacture AR head-mounted displays: a review and outlook. Light Adv. Manuf., 2, 350-369(2021).

    [8] H. J. Jang et al. Progress of display performances: AR, VR, QLED, OLED, and TFT. J. Inf. Disp., 20, 1-8(2019).

    [9] M. Akçayır, G. Akçayır. Advantages and challenges associated with augmented reality for education: a systematic review of the literature. Educ. Res. Rev., 20, 1-11(2017).

    [10] N. C. Martins et al. Augmented reality situated visualization in decision-making. Multimed. Tools. Appl., 81, 14749-14772(2022).

    [11] A. Gasmi, V. Chang, R. Benlamri et al. Augmented reality, virtual reality and new age technologies demand escalates amid COVID-19. Novel AI and Data Science Advancements for Sustainability in the Era of COVID-19, 89-111(2022).

    [12] S. A. Lerner, B. Dahlgrenn. Etendue and optical system design. Proc. SPIE, 6338, 633801(2006).

    [13] P. Schreiber et al. Homogeneous LED-illumination using microlens arrays. Proc. SPIE, 5942, 59420K(2005).

    [14] T. Zhan et al. Multifocal displays: review and prospect. PhotoniX, 1, 10(2020).

    [15] G. Westheimer. The Maxwellian view. Vision Res., 6, 669-682(1966).

    [16] Y. Takaki, N. Fujimoto. Flexible retinal image formation by holographic Maxwellian-view display. Opt. Express, 26, 22985-22999(2018).

    [17] S. Feng et al. Immunochromatographic diagnostic test analysis using Google Glass. ACS Nano, 8, 3069-3079(2014).

    [18] D. Kim et al. Actuating compact wearable augmented reality devices by multifunctional artificial muscle. Nat. Commun., 13, 4155(2022).

    [19] Y. Itoh et al. Beaming displays. IEEE Trans. Vision Comput. Grphics, 27, 2659-2668(2021).

    [20] R. Wu et al. Design of freeform illumination optics. Laser Photonics Rev., 12, 1700310(2018).

    [21] D. Cheng et al. Design of an optical see-through head-mounted display with a low f-number and large field of view using a freeform prism. Appl. Opt., 48, 2655-2668(2009). https://doi.org/10.1364/AO.48.002655

    [22] H. Hua, X. Hu, C. Gao. A high-resolution optical see-through head-mounted display with eyetracking capability. Opt. Express, 21, 30993-30998(2015).

    [23] D. Cheng et al. Design of a wide-angle, lightweight head-mounted display using free-form optics tiling. Opt. Lett., 36, 2098-2100(2011).

    [24] D. Cheng et al. Lightweight spatial-multiplexed dual focal-plane head-mounted display using two freeform prisms. Chin. Opt. Lett., 11, 031201(2013).

    [25] G. Bianco et al. Photopolymer-based volume holographic optical elements: design and possible applications. J. Eur. Opt. Soc., 10, 15057(2015).

    [26] J. Xiong et al. Holographic optical elements for augmented reality: principles, present status, and future perspectives. Adv. Photonics Res., 2, 2000049(2021).

    [27] H. Peng et al. Design and fabrication of a holographic head-up display with asymmetric field of view. Appl. Opt., 53, H177-H185(2014).

    [28] T. Shu et al. Compact full-color augmented reality near-eye display using freeform optics and a holographic optical combiner. Opt. Express, 30, 31714-31727(2022).

    [29] K. Hong et al. Full-color lens-array holographic optical element for three-dimensional optical see-through augmented reality. Opt. Lett., 39, 127-130(2014).

    [30] C. Jang et al. Recent progress in see-through three-dimensional displays using holographic optical elements [invited]. Appl. Opt., 55, A71-A85(2016).

    [31] J.-H. Park, B. Lee. Holographic techniques for augmented reality and virtual reality near-eye displays. Light: Adv. Manuf., 3, 137-150(2022).

    [32] D. Cheng et al. Design of an ultra-thin near-eye display with geometrical waveguide and freeform optics. Opt. Express, 22, 20705-20719(2014).

    [33] Q. Wang et al. Stray light and tolerance analysis of an ultrathin waveguide display. Appl. Opt., 54, 8354-8362(2015).

    [34] Z. Liu et al. Design of a uniform-illumination binocular waveguide display with diffraction gratings and freeform optics. Opt. Express, 25, 30720-30731(2017).

    [35] C. Pan et al. Design of a high-performance in-coupling grating using differential evolution algorithm for waveguide display. Opt. Express, 26, 26646-26662(2018).

    [36] T. Levola, P. Laakkonen. Replicated slanted gratings with a high refractive index material for in and outcoupling of light. Opt. Express, 15, 2067-2074(2007).

    [37] Z. Liu et al. Transparent colored display enabled by flat glass waveguide and nanoimprinted multilayer gratings. ACS Photonics, 7, 1418-1424(2020).

    [38] J. Han et al. Portable waveguide display system with a large field of view by integrating freeform elements and volume holograms. Opt. Express, 23, 3534-3549(2015).

    [39] H. Mukawa et al. A full-color eyewear display using planar waveguides with reflection volume holograms. J. Soc. Inf. Disp., 17, 185-193(2009).

    [40] C. P. Chen et al. Near-eye display with a triple-channel waveguide for metaverse. Opt. Express, 30, 31256-31266(2022).

    [41] N. Yu, F. Capasso. Flat optics with designer metasurfaces. Nat. Mater., 13, 139-150(2014).

    [42] W. T. Chen et al. Flat optics with dispersion-engineered metasurfaces. Nat. Rev. Mater., 5, 604-620(2020).

    [43] H. T. Chen et al. A review of metasurfaces: physics and applications. Rep. Prog. Phys., 79, 076401(2016).

    [44] S. Sun et al. Electromagnetic metasurfaces: physics and applications. Adv. Opt. Photonics, 11, 380-479(2019).

    [45] D. Neshev, I. Aharonovich. Optical metasurfaces: new generation building blocks for multi-functional optics. Light Sci. Appl., 7, 58(2018).

    [46] D. N. Neshev, A. E. Miroshnichenko. Enabling smart vision with metasurfaces. Nat. Photonics, 17, 26-35(2023).

    [47] D. Zhao et al. Recent advances in ultraviolet nanophotonics: from plasmonics and metamaterials to metasurfaces. Nanophotonics, 10, 2283-2308(2021).

    [48] P. Genevet et al. Recent advances in planar optics: from plasmonic to dielectric metasurfaces. Optica, 4, 139-152(2017).

    [49] M. Born et al. Principles of Optics Electromagnetic Theory of Propagation, Interference and Diffraction of Light(2016).

    [50] N. Yu et al. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333-337(2011).

    [51] Y. F. Yu et al. High-transmission dielectric metasurface with 2π phase control at visible wavelengths. Laser Photonics Rev., 9, 412-418(2015).

    [52] X. Ni et al. Broadband light bending with plasmonic nanoantennas. Science, 335, 427(2012).

    [53] W. Liu et al. Dielectric resonance-based optical metasurfaces: from fundamentals to applications. iScience, 23, 101868(2020).

    [54] F. Monticone et al. Full control of nanoscale optical transmission with a composite metascreen. Phys. Rev. Lett., 110, 203903(2013).

    [55] Y. Yang et al. Dielectric meta-reflectarray for broadband linear polarization conversion and optical vortex generation. Nano Lett., 14, 1394-1399(2014).

    [56] F. Ding et al. Bifunctional gap-plasmon metasurfaces for visible light: polarization-controlled unidirectional surface plasmon excitation and beam steering at normal incidence. Light Sci. Appl., 7, 17178(2018).

    [57] F. Ding et al. Broadband high-efficiency half-wave plate: a supercell-based plasmonic metasurface approach. ACS Nano, 9, 4111-4119(2015).

    [58] F. Qin et al. Hybrid bilayer plasmonic metasurface efficiently manipulates visible light. Sci. Adv., 2, e1501168(2016).

    [59] C. Pfeiffer et al. Polarization rotation with ultra-thin bianisotropic metasurfaces. Optica, 3, 427-432(2016).

    [60] C. Zhang et al. Breaking Malus’ law: highly efficient, broadband, and angular robust asymmetric light transmitting metasurface. Laser Photonics Rev., 10, 791-798(2016).

    [61] H. Cheng et al. Emergent functionality and controllability in few-layer metasurfaces. Adv. Mater., 27, 5410-5421(2015).

    [62] Q. Yang et al. Mie-resonant membrane Huygens’ metasurfaces. Adv. Funct. Mater., 30, 1906851(2020).

    [63] I. Staude et al. Tailoring directional scattering through magnetic and electric resonances in subwavelength silicon nanodisks. ACS Nano, 7, 7824-7832(2013).

    [64] S. Kruk et al. Invited article: broadband highly efficient dielectric metadevices for polarization control. APL Photonics, 1, 030801(2016).

    [65] D. Lin et al. Dielectric gradient metasurface optical elements. Science, 345, 298-302(2014).

    [66] G. Zheng et al. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol., 10, 308-312(2015).

    [67] M. Khorasaninejad et al. Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science, 352, 1190-1194(2016).

    [68] R. C. Devlin et al. Broadband high-efficiency dielectric metasurfaces for the visible spectrum. Proc. Natl. Acad. Sci. U. S. A., 113, 10473-10478(2016).

    [69] X. Zhang et al. Colorful metahologram with independently controlled images in transmission and reflection spaces. Adv. Funct. Mater., 29, 1809145(2019).

    [70] W. Luo et al. Photonic spin Hall effect with nearly 100% efficiency. Adv. Opt. Mater., 3, 1102-1108(2015).

    [71] Q. Fan et al. Broadband generation of photonic spin-controlled arbitrary accelerating light beams in the visible. Nano Lett., 19, 1158-1165(2019).

    [72] C. Zhang et al. Low-loss metasurface optics down to the deep ultraviolet region. Light Sci. Appl., 9, 55(2020).

    [73] A. Arbabi et al. Dielectric metasurfaces for complete control of phase and polarization with subwavelength spatial resolution and high transmission. Nat. Nanotechnol., 10, 937-943(2015).

    [74] M. Khorasaninejad et al. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion. Nano Lett., 17, 1819-1824(2017).

    [75] M. Khorasaninejad, K. B. Crozier. Silicon nanofin grating as a miniature chirality-distinguishing beam-splitter. Nat. Commun., 5, 5386(2014).

    [76] Z. Liu et al. Polarization-controlled efficient and unidirectional surface plasmon polariton excitation enabled by metagratings in a generalized Kretschmann configuration. Opt. Express, 29, 3659-3668(2021).

    [77] S. Divitt et al. Ultrafast optical pulse shaping using dielectric metasurfaces. Science, 364, 890-894(2019).

    [78] Q. T. Li et al. Polarization-independent and high-efficiency dielectric metasurfaces for visible light. Opt. Express, 24, 16309-16319(2016).

    [79] J. P. Balthasar Mueller et al. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys. Rev. Lett., 118, 113901(2017).

    [80] R. C. Devlin et al. Arbitrary spin-to-orbital angular momentum conversion of light. Science, 358, 896-901(2017).

    [81] P. Huo et al. Photonic spin-multiplexing metasurface for switchable spiral phase contrast imaging. Nano Lett., 20, 2791-2798(2020).

    [82] C. Min et al. Plasmonic nano-slits assisted polarization selective detour phase meta-hologram. Laser Photonics Rev., 10, 978-985(2016).

    [83] Z. L. Deng et al. Facile metagrating holograms with broadband and extreme angle tolerance. Light Sci. Appl., 7, 78(2018).

    [84] Z. L. Deng et al. Full-color complex-amplitude vectorial holograms based on multi-freedom metasurfaces. Adv. Funct. Mater., 30, 1910610(2020).

    [85] B. R. Brown, A. W. Lohmann. Complex spatial filtering with binary masks. Appl. Opt., 5, 967-969(1966).

    [86] Q. Song et al. Plasmonic topological metasurface by encircling an exceptional point. Science, 373, 1133-1137(2021).

    [87] C. W. Hsu et al. Bound states in the continuum. Nat. Rev. Mat., 1, 16048(2016).

    [88] A. Overvig et al. Chiral quasi-bound states in the continuum. Phys. Rev. Lett., 126, 073001(2021).

    [89] S. C. Malek et al. Multifunctional resonant wavefront-shaping meta-optics based on multilayer and multi-perturbation nonlocal metasurfaces. Light Sci. Appl., 11, 246(2022).

    [90] A. C. Overvig et al. Multifunctional nonlocal metasurfaces. Phys. Rev. Lett., 125, 017402(2020).

    [91] A. H. Dorrah et al. Metasurface optics for on-demand polarization transformations along the optical path. Nat. Photonics, 15, 287-296(2021).

    [92] M. Khorasaninejad et al. Multispectral chiral imaging with a metalens. Nano Lett., 16, 4595-4600(2016).

    [93] S. Uenoyama, R. Ota. Monolithic integration of metalens in silicon photomultiplier for improved photodetection efficiency. Adv. Opt. Mater., 10, 2102707(2022).

    [94] R. J. Lin et al. Achromatic metalens array for full-colour light-field imaging. Nat. Nanotechnol., 14, 227-231(2019).

    [95] S. Wang et al. A broadband achromatic metalens in the visible. Nat. Nanotechnol., 13, 227-232(2018).

    [96] M. K. Chen et al. Edge detection with metalens: from one dimension to three dimensions. Nanophotonics, 10, 3709-3715(2021).

    [97] M. Ye et al. Silicon-rich silicon nitride thin films for subwavelength grating metalens. Opt. Mater. Express, 9, 1200-1207(2019).

    [98] S. Colburn et al. Metasurface optics for full-color computational imaging. Sci. Adv., 4, eaar2114(2018).

    [99] Z. B. Fan et al. A broadband achromatic metalens array for integral imaging in the visible. Light Sci. Appl., 8, 67(2019).

    [100] Z. B. Fan et al. Silicon nitride metalenses for close-to-one numerical aperture and wide-angle visible imaging. Phys. Rev. Appl., 10, 014005(2018).

    [101] M. Jang et al. Wavefront shaping with disorder-engineered metasurfaces. Nat. Photonics, 12, 84-90(2018).

    [102] Y. Bao et al. Full-colour nanoprint-hologram synchronous metasurface with arbitrary hue-saturation-brightness control. Light Sci. Appl., 8, 95(2019).

    [103] D. Sell et al. Visible light metasurfaces based on single-crystal silicon. ACS Photonics, 3, 1919-1925(2016).

    [104] B. Wang et al. Visible-frequency dielectric metasurfaces for multiwavelength achromatic and highly dispersive holograms. Nano Lett., 16, 5235-5240(2016).

    [105] H. Feng et al. Spin-switched three-dimensional full-color scenes based on a dielectric meta-hologram. ACS Photonics, 6, 2910-2916(2019).

    [106] H. Liang et al. Ultrahigh numerical aperture metalens at visible wavelengths. Nano Lett., 18, 4460-4466(2018).

    [107] J. S. Park et al. All-glass, large metalens at visible wavelength using deep-ultraviolet projection lithography. Nano Lett., 19, 8673-8682(2019).

    [108] H. Ren et al. Complex-amplitude metasurface-based orbital angular momentum holography in momentum space. Nat. Nanotechnol., 15, 948-955(2020).

    [109] R. Paniagua-Dominguez et al. A metalens with a near-unity numerical aperture. Nano Lett., 18, 2124-2132(2018).

    [110] M. Liu et al. Multifunctional metasurfaces enabled by simultaneous and independent control of phase and amplitude for orthogonal polarization states. Light Sci. Appl., 10, 107(2021).

    [111] Q. Fan et al. Independent amplitude control of arbitrary orthogonal states of polarization via dielectric metasurfaces. Phys. Rev. Lett., 125, 267402(2020).

    [112] K. Huang et al. Ultraviolet metasurfaces of 80% efficiency with antiferromagnetic resonances for optical vectorial anti-counterfeiting. Laser Photonics Rev., 13, 1800289(2019). https://doi.org/10.1002/lpor.201800289

    [113] S. Y. Chou et al. Imprint lithography with 25-nanometer resolution. Science, 272, 85-87(1996).

    [114] L. J. Guo. Nanoimprint lithography: methods and material requirements. Adv. Mater., 19, 495-513(2007).

    [115] C. Zhang et al. Printed photonic elements: nanoimprinting and beyond. J. Mater. Chem. C, 4, 5133-5153(2016).

    [116] Y. K. R. Wu et al. Angle-insensitive structural colours based on metallic nanocavities and coloured pixels beyond the diffraction limit. Sci. Rep., 3, 1194(2013).

    [117] C. A. Dirdal et al. Towards high-throughput large-area metalens fabrication using UV-nanoimprint lithography and Bosch deep reactive ion etching. Opt. Express, 28, 15542-15561(2020).

    [118] H. Kurosawa et al. High-performance metasurface polarizers with extinction ratios exceeding 12000. Opt. Express, 25, 4446-4455(2017).

    [119] G. Y. Lee et al. Metasurface eyepiece for augmented reality. Nat. Commun., 9, 4562(2018).

    [120] K. Kim et al. Facile nanocasting of dielectric metasurfaces with sub-100 nm resolution. ACS Appl. Mater. Interfaces, 11, 26109-26115(2019).

    [121] W. Kim et al. Thermally-curable nanocomposite printing for the scalable manufacturing of dielectric metasurfaces. Microsyst. Nanoeng., 8, 73(2022).

    [122] G. Yoon et al. Single-step manufacturing of hierarchical dielectric metalens in the visible. Nat. Commun., 11, 2268(2020).

    [123] D. K. Oh et al. Nanoimprint lithography for high-throughput fabrication of metasurfaces. Front. Optoelectron., 14, 229-251(2021).

    [124] J. Shen et al. Ultra-broadband on-chip beam focusing enabled by grin metalens on silicon-on-insulator platform. Nanophotonics, 11, 3603-3612(2022).

    [125] A. Yulaev et al. Metasurface-integrated photonic platform for versatile free-space beam projection with polarization control. ACS Photonics, 6, 2902-2909(2019).

    [126] C. Chen et al. Spectral tomographic imaging with aplanatic metalens. Light Sci. Appl., 8, 99(2019).

    [127] M. Y. Shalaginov et al. Single-element diffraction-limited fisheye metalens. Nano Lett., 20, 7429-7437(2020).

    [128] J. Engelberg et al. Near-IR wide-field-of-view Huygens metalens for outdoor imaging applications. Nanophotonics, 9, 361-370(2020).

    [129] B. Groever et al. Meta-lens doublet in the visible region. Nano Lett., 17, 4902-4907(2017).

    [130] A. Arbabi et al. Miniature optical planar camera based on a wide-angle metasurface doublet corrected for monochromatic aberrations. Nat. Commun., 7, 13682(2016).

    [131] A. Martins et al. On metalenses with arbitrarily wide field of view. ACS Photonics, 7, 2073-2079(2020).

    [132] J. Chen et al. Planar wide-angle-imaging camera enabled by metalens array. Optica, 9, 431-437(2022).

    [133] J. Engelberg, U. Levy. The advantages of metalenses over diffractive lenses. Nat. Commun., 11, 1991(2020).

    [134] M. Pan et al. Dielectric metalens for miniaturized imaging systems: progress and challenges. Light Sci. Appl., 11, 195(2022).

    [135] S. Banerji et al. Imaging with flat optics: metalenses or diffractive lenses?. Optica, 6, 805-810(2019).

    [136] E. Tseng et al. Neural nano-optics for high-quality thin lens imaging. Nat. Commun., 12, 6493(2021).

    [137] X. Luo et al. Recent advances of wide-angle metalenses: principle, design, and applications. Nanophotonics, 11, 1-20(2022).

    [138] A. Arbabi, A. Faraon. Advances in optical metalenses. Nat. Photonics, 17, 16-25(2023).

    [139] X. Zou et al. Imaging based on metalenses. PhotoniX, 1, 2(2020).

    [140] M. Khorasaninejad, F. Capasso. Metalenses: versatile multifunctional photonic components. Science, 358, eaam8100(2017).

    [141] B. Groever et al. High-efficiency chiral metalens. Sci. Rep., 8, 7240(2018).

    [142] C. He et al. Chiral metalens of circular polarization dichroism with helical surface arrays in mid-infrared region. Adv. Opt. Mater., 7, 1901129(2019).

    [143] J. Kim et al. Chiroptical metasurfaces: principles, classification, and applications. Sensors, 21, 4381(2021).

    [144] Y. Kim et al. Spiral metalens for phase contrast imaging. Adv. Funct. Mater., 32, 2106050(2022).

    [145] W. Fu et al. Ultracompact meta-imagers for arbitrary all-optical convolution. Light Sci. Appl., 11, 62(2022).

    [146] J. Zhou et al. Metasurface enabled quantum edge detection. Sci. Adv., 6, eabc4385(2020).

    [147] E. Arbabi et al. Multiwavelength metasurfaces through spatial multiplexing. Sci. Rep., 6, 32803(2016).

    [148] K. Li et al. Dispersion controlling metalens at visible frequency. Opt. Express, 25, 21419-21427(2017).

    [149] Y. Zhou et al. Multilayer noninteracting dielectric metasurfaces for multiwavelength metaoptics. Nano Lett., 18, 7529-7537(2018).

    [150] O. Avayu et al. Composite functional metasurfaces for multispectral achromatic optics. Nat. Commun., 8, 14992(2017).

    [151] F. Aieta et al. Multiwavelength achromatic metasurfaces by dispersive phase compensation. Science, 347, 1342-1345(2015).

    [152] Z. Li et al. Meta-optics achieves RGB-achromatic focusing for virtual reality. Sci. Adv., 7, eabe4458(2021).

    [153] Z. Li et al. Inverse design enables large-scale high-performance meta-optics reshaping virtual reality. Nat. Commun., 13, 2409(2022).

    [154] H. Li et al. Bandpass-filter-integrated multiwavelength achromatic metalens. Photonics Res., 9, 1384-1390(2021).

    [155] W. T. Chen et al. Broadband achromatic metalens for focusing and imaging in the visible. Nat. Nanotechnol., 13, 220-226(2018).

    [156] S. Shrestha et al. Broadband achromatic dielectric metalenses. Light Sci. Appl., 7, 85(2018).

    [157] A. Ndao et al. Octave bandwidth photonic fishnet-achromatic-metalens. Nat. Commun., 11, 3205(2020).

    [158] F. Presutti, F. Monticone. Focusing on bandwidth: achromatic metalens limits. Optica, 7, 624-631(2020).

    [159] Y. Wang et al. High-efficiency broadband achromatic metalens for near-IR biological imaging window. Nat. Commun., 12, 5560(2021).

    [160] S. W. D. Lim et al. A high aspect ratio inverse-designed holey metalens. Nano Lett., 21, 8642-8649(2021).

    [161] X. Xiao et al. Large-scale achromatic flat lens by light frequency-domain coherence optimization. Light Sci. Appl., 11, 323(2022).

    [162] H. Ren et al. An achromatic metafiber for focusing and imaging across the entire telecommunication range. Nat. Commun., 13, 4183(2022).

    [163] W. T. Chen et al. Broadband achromatic metasurface-refractive optics. Nano Lett., 18, 7801-7808(2018).

    [164] R. Sawant et al. Aberration-corrected large-scale hybrid metalenses. Optica, 8, 1405-1411(2021).

    [165] K. H. Shih, C. K. Renshaw. Broadband metasurface aberration correctors for hybrid meta/refractive MWIR lenses. Opt. Express, 30, 28438-28453(2022).

    [166] S. Wang et al. Broadband achromatic optical metasurface devices. Nat. Commun., 8, 187(2017).

    [167] W. T. Chen et al. A broadband achromatic polarization-insensitive metalens consisting of anisotropic nanostructures. Nat. Commun., 10, 355(2019).

    [168] Y. Wang et al. Design of high efficiency achromatic metalens with large operation bandwidth using bilayer architecture. Opto-Electron. Adv., 4, 200008(2021).

    [169] M. Li et al. Dual-layer achromatic metalens design with an effective Abbe number. Opt. Express, 28, 26041-26055(2020).

    [170] J. W. Kim, Y. J. Kim. Design of a polarization insensitive achromatic metalens with a high NA and uniform focusing efficiency based on a double layer structure of silicon and germanium. J. Opt. Soc. Am. B, 39, 1216-1221(2022).

    [171] Y. Li et al. Ultracompact multifunctional metalens visor for augmented reality displays. PhotoniX, 3, 1(2022).

    [172] E. Bayati et al. Design of achromatic augmented reality visors based on composite metasurfaces. Appl. Opt., 60, 844-850(2021).

    [173] Q. Guo et al. Design of single-layer color echelle grating optical waveguide for augmented-reality display. Opt. Express, 31, 3954-3969(2023).

    [174] Y. Meng et al. Versatile on-chip light coupling and (de)multiplexing from arbitrary polarizations to controlled waveguide modes using an integrated dielectric metasurface. Photonics Res., 8, 564-576(2020).

    [175] X. Guo et al. Molding free-space light with guided wave–driven metasurfaces. Sci. Adv., 6, eabb4142(2020).

    [176] R. Wang et al. Broadband on-chip terahertz asymmetric waveguiding via phase-gradient metasurface. ACS Photonics, 6, 1774-1779(2019).

    [177] Z. Li et al. Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces. Nat. Nanotechnol., 12, 675-683(2017).

    [178] D. Ohana et al. Dielectric metasurface as a platform for spatial mode conversion in nanoscale waveguides. Nano Lett., 16, 7956-7961(2016).

    [179] C. Yao et al. Dielectric nanoaperture metasurfaces in silicon waveguides for efficient and broadband mode conversion with an ultrasmall footprint. Adv. Opt. Mater., 8, 2000529(2020).

    [180] H. Wang et al. Compact silicon waveguide mode converter employing dielectric metasurface structure. Adv. Opt. Mater., 7, 1801191(2019).

    [181] P. Y. Hsieh et al. Integrated metasurfaces on silicon photonics for emission shaping and holographic projection. Nanophotonics, 11, 4687-4695(2022).

    [182] Z. Shi, W. T. Chen, F. Capasso. Wide field-of-view waveguide displays enabled by polarization-dependent metagratings. Proc. SPIE, 10676, 1067615(2018).

    [183] Z. Liu et al. Compact stereo waveguide display based on a unidirectional polarization-multiplexed metagrating in-coupler. ACS Photonics, 8, 1112-1119(2021).

    [184] J. Tang et al. Dynamic augmented reality display by layer-folded metasurface via electrical-driven liquid crystal. Adv. Opt. Mater., 10, 2200418(2022).

    [185] Y. Liu et al. On-chip integrated metasystem with inverse-design wavelength demultiplexing for augmented reality. ACS Photonics(2023).

    [186] W. Q. Chen et al. Nearly dispersionless multicolor metasurface beam deflector for near eye display designed by a physics-driven deep neural network. Appl. Opt., 60, 3947-3953(2021).

    [187] J. Xiao et al. Design of achromatic surface microstructure for near-eye display with diffractive waveguide. Opt. Commun., 452, 411-416(2019).

    [188] R. Ditcovski, O. Avayu, T. Ellenbogen. Full-color optical combiner based on multilayered metasurface design. Proc. SPIE, 10942, 109420S(2019).

    [189] R. Collier. Optical Holography(2013).

    [190] D. Gabor. A new microscopic principle. Nature, 161, 777-778(1948).

    [191] W. Colburn, K. Haines. Volume hologram formation in photopolymer materials. Appl. Opt., 10, 1636-1641(1971).

    [192] J. T. Sheridan et al. Roadmap on holography. J. Opt., 22, 123002(2020).

    [193] G. Tricoles. Computer generated holograms: an historical review. Appl. Opt., 26, 4351-4360(1987).

    [194] J. H. Park. Recent progress in computer-generated holography for three-dimensional scenes. J. Inf. Disp., 18, 1-12(2017).

    [195] D. Blinder et al. The state-of-the-art in computer generated holography for 3D display. Light Adv. Manuf., 3, 572-600(2022).

    [196] J. W. Goodman. Introduction to Fourier Optics(2005).

    [197] B. Brown, A. Lohmann. Computer-generated binary holograms. IBM J. Res. Dev., 13, 160-168(1969).

    [198] Y. L. Li et al. Tunable liquid crystal grating based holographic 3D display system with wide viewing angle and large size. Light Sci. Appl., 11, 188(2022).

    [199] W. Wan et al. Efficient fabrication method of nano-grating for 3D holographic display with full parallax views. Opt. Express, 24, 6203-6212(2016).

    [200] M. C. Park et al. Properties of DMDs for holographic displays. J. Mod. Opt., 62, 1600-1607(2015).

    [201] F. Wyrowski, O. Bryngdahl. Digital holography as part of diffractive optics. Rep. Prog. Phys., 54, 1481(1991).

    [202] K. H. Fan-Chiang et al. Analog LCOS SLM devices for AR display applications. J. Soc. Inf. Disp., 28, 581-590(2020).

    [203] C. W. Slinger et al. Recent developments in computer-generated holography: toward a practical electroholography system for interactive 3D visualization. Proc. SPIE, 5290, 27-41(2004).

    [204] W. Freese et al. Design of binary subwavelength multiphase level computer generated holograms. Opt. Lett., 35, 676-678(2010).

    [205] H. Gao et al. Recent advances in optical dynamic meta-holography. Opto-Electron. Adv., 4, 210030-210030(2021).

    [206] R. Zhao et al. Recent advances in multi-dimensional metasurfaces holographic technologies. PhotoniX, 1, 20(2020).

    [207] L. Huang et al. Metasurface holography: from fundamentals to applications. Nanophotonics, 7, 1169-1190(2018).

    [208] L. Huang et al. Three-dimensional optical holography using a plasmonic metasurface. Nat. Commun., 4, 2808(2013).

    [209] X. Ni et al. Metasurface holograms for visible light. Nat. Commun., 4, 2807(2013).

    [210] X. Li et al. Multicolor 3D meta-holography by broadband plasmonic modulation. Sci. Adv., 2, e1601102(2016).

    [211] W. T. Chen et al. High-efficiency broadband meta-hologram with polarization-controlled dual images. Nano Lett., 14, 225-230(2014).

    [212] Y. W. Huang et al. Aluminum plasmonic multicolor meta-hologram. Nano Lett., 15, 3122-3127(2015).

    [213] D. Wen et al. Helicity multiplexed broadband metasurface holograms. Nat. Commun., 6, 8241(2015).

    [214] E. O. Brigham. The Fast Fourier Transform and Its Applications(1988).

    [215] R. W. Gerchberg. A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik, 35, 237-246(1972).

    [216] Z. Xu et al. Quantitatively correlated amplitude holography based on photon sieves. Adv. Opt. Mater., 8, 1901169(2020).

    [217] K. Huang et al. Ultrahigh-capacity non-periodic photon sieves operating in visible light. Nat. Commun., 6, 7059(2015).

    [218] K. Huang et al. Photon-nanosieve for ultrabroadband and large-angle-of-view holograms. Laser Photonics Rev., 11, 1700025(2017).

    [219] Y. Montelongo et al. Plasmonic nanoparticle scattering for color holograms. Proc. Natl. Acad. Sci. U. S. A., 111, 12679-12683(2014).

    [220] Y. Montelongo et al. Polarization switchable diffraction based on subwavelength plasmonic nanoantennas. Nano Lett., 14, 294-298(2014).

    [221] A. C. Overvig et al. Dielectric metasurfaces for complete and independent control of the optical amplitude and phase. Light Sci. Appl., 8, 92(2019).

    [222] G. Y. Lee et al. Complete amplitude and phase control of light using broadband holographic metasurfaces. Nanoscale, 10, 4237-4245(2018).

    [223] Z. Huang et al. Out-of-plane computer-generated multicolor waveguide holography. Optica, 6, 119-124(2019).

    [224] Z. Huang et al. Polarization-selective waveguide holography in the visible spectrum. Opt. Express, 27, 35631-35645(2019).

    [225] Y. Ding et al. Metasurface-dressed two-dimensional on-chip waveguide for free-space light field manipulation. ACS Photonics, 9, 398-404(2022).

    [226] J. Chen et al. Multiplexed holograms by surface plasmon propagation and polarized scattering. Nano Lett., 17, 5051-5055(2017).

    [227] Y. H. Chen et al. Wavefront shaping of infrared light through a subwavelength hole. Light Sci. Appl., 1, e26(2012).

    [228] W. Song et al. Large-scale Huygens’ metasurfaces for holographic 3D near-eye displays. Laser Photonics Rev., 15, 2000538(2021).

    [229] W. Song et al. Retinal projection near-eye displays with Huygens’ metasurfaces. Adv. Opt. Mater., 11, 2202348(2023).

    [230] Y. Shi et al. Augmented reality enabled by on-chip meta-holography multiplexing. Laser Photonics Rev., 16, 2100638(2022).

    [231] B. Xiong et al. Breaking the limitation of polarization multiplexing in optical metasurfaces with engineered noise. Science, 379, 294-299(2023).

    [232] F. Ding et al. Versatile polarization generation and manipulation using dielectric metasurfaces. Laser Photonics Rev., 14, 2000116(2020).

    [233] S. M. Kamali et al. Angle-multiplexed metasurfaces: encoding independent wavefronts in a single metasurface under different illumination angles. Phys. Rev. X, 7, 041056(2017).

    [234] J. Jang et al. Independent multichannel wavefront modulation for angle multiplexed meta-holograms. Adv. Opt. Mater., 9, 2100678(2021).

    [235] Z. Shi et al. Single-layer metasurface with controllable multiwavelength functions. Nano Lett., 18, 2420-2427(2018).

    [236] X. Li et al. Time-sequential color code division multiplexing holographic display with metasurface. Opto-Electron. Adv., 6, 220060(2023).

    [237] X. Fang et al. Orbital angular momentum holography for high-security encryption. Nat. Photonics, 14, 102-108(2019).

    [238] H. Ren et al. Metasurface orbital angular momentum holography. Nat. Commun., 10, 2986(2019).

    [239] K. Jaekyung et al. Tunable metasurfaces towards versatile metalenses and metaholograms: a review. Adv. Photonics, 4, 024001(2022).

    [240] T. Cui et al. Tunable metasurfaces based on active materials. Adv. Funct. Mater., 29, 1806692(2019).

    [241] Y. Ni et al. Computational spectropolarimetry with a tunable liquid crystal metasurface. eLight, 2, 23(2022).

    [242] O. A. M. Abdelraouf et al. Recent advances in tunable metasurfaces: materials, design, and applications. ACS Nano, 16, 13339-13369(2022).

    [243] G. Yang et al. Gerchberg–Saxton and Yang–Gu algorithms for phase retrieval in a nonunitary transform system: a comparison. Appl. Opt., 33, 209-218(1994).

    [244] R. Di Leonardo et al. Computer generation of optimal holograms for optical trap arrays. Opt. Express, 15, 1913-1922(2007).

    [245] J. R. Fienup. Iterative method applied to image reconstruction and to computer-generated holograms. Opt. Eng., 19, 193297(1980).

    [246] H. Akahori. Spectrum leveling by an iterative algorithm with a dummy area for synthesizing the kinoform. Appl. Opt., 25, 802-811(1986).

    [247] M. Pasienski, B. DeMarco. A high-accuracy algorithm for designing arbitrary holographic atom traps. Opt. Express, 16, 2176-2190(2008).

    [248] C. Chang et al. Speckle-suppressed phase-only holographic three-dimensional display based on double-constraint Gerchberg–Saxton algorithm. Appl. Opt., 54, 6994-7001(2015).

    [249] R. Eschbach. Comparison of error diffusion methods for computer-generated holograms. Appl. Opt., 30, 3702-3710(1991).

    [250] P. W. M. Tsang et al. Fast conversion of digital Fresnel hologram to phase-only hologram based on localized error diffusion and redistribution. Opt. Express, 22, 5060-5066(2014).

    [251] Y. Dauphin et al. RMSProp and equilibrated adaptive learning rates for non-convex optimization(2015).

    [252] P. Chakravarthula et al. Wirtinger holography for near-eye displays. ACM Trans. Graphics, 38, 213(2019).

    [253] S. Choi et al. Optimizing image quality for holographic near-eye displays with Michelson holography. Optica, 8, 143-146(2021).

    [254] Y. Peng et al. Neural holography with camera-in-the-loop training. ACM Trans. Graphics, 39, 185(2020).

    [255] R. Horisaki et al. Deep-learning-generated holography. Appl. Opt., 57, 3859-3863(2018).

    [256] F. Isensee et al. nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods, 18, 203-211(2021).

    [257] J. Wu et al. High-speed computer-generated holography using an autoencoder-based deep neural network. Opt. Lett., 46, 2908-2911(2021).

    [258] B. J. Lin. Deep UV lithography. J. Vac. Sci. Technol., 12, 1317-1320(1975).

    [259] M. Keil et al. Large plasmonic color metasurfaces fabricated by super resolution deep UV lithography. Nanoscale Adv., 3, 2236-2244(2021).

    [260] Y. Dong et al. Si metasurface half-wave plates demonstrated on a 12-inch CMOS platform. Nanophotonics, 9, 149-157(2020).

    [261] B. Wu, A. Kumar. Extreme ultraviolet lithography: a review. J. Vac. Sci. Technol. B, 25, 1743-1761(2007).

    [262] G. S. Oehrlein. Dry etching damage of silicon: a review. Mater. Sci. Eng., B, 4, 441-450(1989).

    [263] S. Pearton, R. Shul, F. Ren. A review of dry etching of GaN and related materials. MRS Internet J. Nitride Semicond. Res., 5, e11(2000).

    [264] H. V. Jansen et al. Black silicon method X: a review on high speed and selective plasma etching of silicon with profile control: an in-depth comparison between Bosch and cryostat DRIE processes as a roadmap to next generation equipment. J. Micromech. Microeng., 19, 033001(2009).

    [265] J. H. Song et al. Non-local metasurfaces for spectrally decoupled wavefront manipulation and eye tracking. Nat. Nanotechnol., 16, 1224-1230(2021).

    [266] Y. Deng et al. Recent progress in metasurface-enabled optical waveplates. Photonics, 11, 2219-2244(2022).

    [267] N. Yu et al. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano Lett., 12, 6328-6333(2012).

    [268] Y. Intaravanne, X. Chen. Recent advances in optical metasurfaces for polarization detection and engineered polarization profiles. Nanophotonics, 9, 1003-1014(2020).

    [269] S. Wang et al. Arbitrary polarization conversion dichroism metasurfaces for all-in-one full Poincaré sphere polarizers. Light Sci. Appl., 10, 24(2021).

    [270] Y. Chen, J. Gao, X. Yang. Direction-controlled bifunctional metasurface polarizers. Laser Photonics Rev., 12, 1800198(2018).

    [271] M. Khorasaninejad et al. Efficient polarization beam splitter pixels based on a dielectric metasurface. Optica, 2, 376-382(2015).

    [272] X. Zhang et al. Metasurface-based ultrathin beam splitter with variable split angle and power distribution. ACS Photonics, 5, 2997-3002(2018).

    [273] D. Zhang et al. Nanoscale beam splitters based on gradient metasurfaces. Opt. Lett., 43, 267-270(2018).

    [274] C. Ji et al. Engineering light at the nanoscale: structural color filters and broadband perfect absorbers. Adv. Opt. Mater., 5, 1700368(2017).

    [275] W. Yang et al. All-dielectric metasurface for high-performance structural color. Nat. Commun., 11, 1864(2020).

    [276] B. Yang et al. Structural colors in metasurfaces: principle, design and applications. Mater. Chem. Front., 3, 750-761(2019).

    [277] D. Wang et al. Structural color generation: from layered thin films to optical metasurfaces. Nanophotonics, 12, 1019-1081(2023).

    [278] W. J. Joo et al. Metasurface-driven OLED displays beyond 10,000 pixels per inch. Science, 370, 459-463(2020).

    [279] D. K. Nikolov et al. Metaform optics: bridging nanophotonics and freeform optics. Sci. Adv., 7, eabe5112(2021).

    [280] C. Walker et al. Transparent metasurfaces counteracting fogging by harnessing sunlight. Nano Lett., 19, 1595-1604(2019).

    [281] I. Haechler et al. Transparent sunlight-activated antifogging metamaterials. Nat. Nanotechnol., 18, 137-144(2022).

    Zeyang Liu, Danyan Wang, Hao Gao, Moxin Li, Huixian Zhou, Cheng Zhang. Metasurface-enabled augmented reality display: a review[J]. Advanced Photonics, 2023, 5(3): 034001
    Download Citation