• Infrared and Laser Engineering
  • Vol. 50, Issue 9, 20210445 (2021)
Zhensong Wan, Chaoyang Wang, Qiang Liu, and Xing Fu
Author Affiliations
  • Key Laboratory of Photonic Control Technology of Ministry of Education, Department of Precision Instrument, Tsinghua University, Beijing 100084, China
  • show less
    DOI: 10.3788/IRLA20210445 Cite this Article
    Zhensong Wan, Chaoyang Wang, Qiang Liu, Xing Fu. Research progress on technologies and applications of geometric coordinate transformation of vortex beam (Invited)[J]. Infrared and Laser Engineering, 2021, 50(9): 20210445 Copy Citation Text show less
    References

    [1] Webb W T, Hanzo L. Modern Quadrature Amplitude Modulation: Principles Applications f Fixed Wireless Channels: One[M]. US: IEEE PressJohn Wiley, 1994.

    [2] Mukherjee B. Optical WDM wks[M]. Berlin: Springer Science & Business Media, 2006.

    [3] Hanzo L, Ng S X, Keller T, et al. Quadrature Amplitude Modulation[M]. Chichester, UK: Wiley, 2004.

    [4] H Rubinsztein-Dunlop, A Forbes, M V Berry, et al. Roadmap on structured light. Journal of Optics, 19, 013001(2016).

    [5] A Forbes, M Oliveira, M R Dennis. Structured light. Nature Photonics, 15, 253-262(2021).

    [6] M W Beijersbergen, L Allen, H E L O Veen, et al. Astigmatic laser mode converters and transfer of orbital angular momentum. Optics Communications, 96, 123-132(1993).

    [7] S J Enk, G Nienhuis. Eigenfunction description of laser beams and orbital angular momentum of light. Optics Communications, 94, 147-158(1992).

    [8] L Allen, M W Beijersbergen, R Spreeuw, et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Physical Review A, 45, 8185(1992).

    [9] Y Shen, X Wang, Z Xie, et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities. Light: Science & Applications, 8, 90(2019).

    [10] A E Willner, H Huang, Y Yan, et al. Optical communications using orbital angular momentum beams. Advances in Optics and Photonics, 7, 66-106(2015).

    [11] J Geng. Structured-light 3D surface imaging: a tutorial. Advances in Optics and Photonics, 3, 128-160(2011).

    [12] A Mair, A Vaziri, G Weihs, et al. Entanglement of the orbital angular momentum states of photons. Nature, 412, 313-316(2001).

    [13] E Otte, I Nape, C Rosales-Guzmán, et al. High-dimensional cryptography with spatial modes of light: tutorial. Journal of the Optical Society of America B, 37, A309-A323(2020).

    [14] X Fang, H Ren, M Gu. Orbital angular momentum holography for high-security encryption. Nature Photonics, 14, 102-108(2020).

    [15] M Erhard, R Fickler, M Krenn, et al. Twisted photons: new quantum perspectives in high dimensions. Light: Science & Applications, 7, 17146(2018).

    [16] J Wang. Advances in communications using optical vortices. Photonics Research, 4, B14-B28(2016).

    [17] Bozinovic N, Yue Y, Ren Y, et al. bital angular momentum (OAM) based mode division multiplexing (MDM) over a Kmlength fiber [C]Optical Society of America, 2012: Th.3.C.6.

    [18] N Bozinovic, Y Yue, Y Ren, et al. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 340, 1545-1548(2013).

    [19] B Ndagano, I Nape, M A Cox, et al. Creation and detection of vector vortex modes for classical and quantum communication. Journal of Lightwave Technology, 36, 292-301(2018).

    [20] R Chen, H Zhou, M Moretti, et al. Orbital angular momentum waves: generation, detection, and emerging applications. IEEE Communications Surveys & Tutorials, 22, 840-868(2019).

    [21] F Qin, L Wan, L Li, et al. A transmission metasurface for generating OAM beams. IEEE Antennas and Wireless Propagation Letters, 17, 1793-1796(2018).

    [22] RosalesGuzmán C, Fbes A. How to Shape Light with Spatial Light Modulats[M]. US: SPIE Press, 2017.

    [23] Y Shen, Y Meng, X Fu, et al. Wavelength-tunable Hermite–Gaussian modes and an orbital-angular-momentum-tunable vortex beam in a dual-off-axis pumped Yb: CALGO laser. Optics Letters, 43, 291-294(2018).

    [24] R Song, C Gao, H Zhou, et al. Resonantly pumped Er: YAG vector laser with selective polarization states at 1.6 µm. Optics Letters, 45, 4626-4629(2020).

    [25] H Wang, S Fu, C Gao. Tailoring a complex perfect optical vortex array with multiple selective degrees of freedom. Optics Express, 29, 10811-10824(2021).

    [26] A Anhäuser, R Wunenburger, E Brasselet. Acoustic rotational manipulation using orbital angular momentum transfer. Physical Review Letters, 109, 034301(2012).

    [27] X Jiang, Y Li, B Liang, et al. Convert acoustic resonances to orbital angular momentum. Physical Review Letters, 117, 034301(2016).

    [28] H Li, G Ren, B Zhu, et al. Guiding terahertz orbital angular momentum beams in multimode Kagome hollow-core fibers. Optics Letters, 42, 179-182(2017).

    [29] J Verbeeck, H Tian, P Schattschneider. Production and application of electron vortex beams. Nature, 467, 301-304(2010).

    [30] C Liu, J Liu, L Niu, et al. Terahertz circular Airy vortex beams. Scientific Reports, 7, 1-8(2017).

    [31] M Mirhosseini, M Malik, Z Shi, et al. Efficient separation of the orbital angular momentum eigenstates of light. Nature Communications, 4, 1-6(2013).

    [32] J Leach, M J Padgett, S M Barnett, et al. Measuring the orbital angular momentum of a single photon. Physical Review Letters, 88, 257901(2002).

    [33] Z Liu, S Yan, H Liu, et al. Superhigh-resolution recognition of optical vortex modes assisted by a deep-learning method. Physical Review Letters, 123, 183902(2019).

    [34] J M Hickmann, E Fonseca, W C Soares, et al. Unveiling a truncated optical lattice associated with a triangular aperture using light’s orbital angular momentum. Physical Review Letters, 105, 053904(2010).

    [35] A Mourka, J Baumgartl, C Shanor, et al. Visualization of the birth of an optical vortex using diffraction from a triangular aperture. Optics Express, 19, 5760-5771(2011).

    [36] S Fu, S Zhang, T Wang, et al. Measurement of orbital angular momentum spectra of multiplexing optical vortices. Optics Express, 24, 6240-6248(2016).

    [37] S Fu, Y Zhai, J Zhang, et al. Universal orbital angular momentum spectrum analyzer for beams. PhotoniX, 1, 1-12(2020).

    [38] Y Liu, S Sun, J Pu, et al. Propagation of an optical vortex beam through a diamond-shaped aperture. Optics & Laser Technology, 45, 473-479(2013).

    [39] A Ambuj, R Vyas, S Singh. Diffraction of orbital angular momentum carrying optical beams by a circular aperture. Optics Letters, 39, 5475-5478(2014).

    [40] H Tao, Y Liu, Z Chen, et al. Measuring the topological charge of vortex beams by using an annular ellipse aperture. Applied Physics B, 106, 927-932(2012).

    [41] H Qassim, F M Miatto, J P Torres, et al. Limitations to the determination of a Laguerre–Gauss spectrum via projective, phase-flattening measurement. Journal of the Optical Society of America B, 31, A20-A23(2014).

    [42] S Choudhary, R Sampson, Y Miyamoto, et al. Measurement of the radial mode spectrum of photons through a phase-retrieval method. Optics Letters, 43, 6101-6104(2018).

    [43] F Bouchard, N H Valencia, F Brandt, et al. Measuring azimuthal and radial modes of photons. Optics Express, 26, 31925-31941(2018).

    [44] J Wang, J Yang, I M Fazal, et al. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nature photonics, 6, 488-496(2012).

    [45] Zhou Y. Optical communication with structured photons propagating through dynamic, aberrating media[D]. Rochester: University of Rochester, 2021.

    [46] G C Berkhout, M P Lavery, J Courtial, et al. Efficient sorting of orbital angular momentum states of light. Physical Review Letters, 105, 153601(2010).

    [47] Y Wen, I Chremmos, Y Chen, et al. Spiral transformation for high-resolution and efficient sorting of optical vortex modes. Physical Review Letters, 120, 193904(2018).

    [48] W J Hossack, A M Darling, A Dahdouh. Coordinate transformations with multiple computer-generated optical elements. Journal of Modern Optics, 34, 1235-1250(1987).

    [49] G Ruffato, M Massari, G Parisi, et al. Test of mode-division multiplexing and demultiplexing in free-space with diffractive transformation optics. Optics Express, 25, 7859-7868(2017).

    [50] J Yang, Z Liu, S Gao, et al. Two-dimension and high-resolution demultiplexing of coaxial multiple orbital angular momentum beams. Optics Express, 27, 4338-4345(2019).

    [51] C Li, S Zhao. Efficient separating orbital angular momentum mode with radial varying phase. Photonics Research, 5, 267-270(2017).

    [52] G Ruffato, M Massari, F Romanato. Compact sorting of optical vortices by means of diffractive transformation optics. Optics Letters, 42, 551-554(2017).

    [53] G Ruffato, M Massari, M Girardi, et al. Non-paraxial design and fabrication of a compact OAM sorter in the telecom infrared. Optics Express, 27, 24123-24134(2019).

    [54] S Lightman, G Hurvitz, R Gvishi, et al. Miniature wide-spectrum mode sorter for vortex beams produced by 3D laser printing. Optica, 4, 605-610(2017).

    [55] C Wan, J Chen, Q Zhan. Compact and high-resolution optical orbital angular momentum sorter. APL Photonics, 2, 031302(2017).

    [56] S Lightman, R Gvishi, G Hurvitz, et al. Shaping of light beams by 3D direct laser writing on facets of nonlinear crystals. Optics Letters, 40, 4460-4463(2015).

    [57] Y Yan, G Xie, M P Lavery, et al. High-capacity millimetre-wave communications with orbital angular momentum multiplexing. Nature Communications, 5, 5876(2014).

    [58] M P Lavery, D J Robertson, G C Berkhout, et al. Refractive elements for the measurement of the orbital angular momentum of a single photon. Optics Express, 20, 2110-2115(2012).

    [59] G Ruffato, M Girardi, M Massari, et al. A compact diffractive sorter for high-resolution demultiplexing of orbital angular momentum beams. Scientific Reports, 8, 1-12(2018).

    [60] Wen Y, Chremmos I, Chen Y, et al. Highresolution compact vtex mode sters based on a spiral transfmation [C]2018 Conference on Lasers ElectroOptics (CLEO), IEEE, 2018: 12.

    [61] Huo Y, Yang G, Gu B. Realization of unitary transfm general linear transfmation by optical methods—(I)Possibility analysis [J]. Acta Physica Sinica, 1975, 24(6): 438447. (in Chinese)

    [62] N K Fontaine, R Ryf, H Chen, et al. Laguerre-Gaussian mode sorter. Nature Communications, 10, 1-7(2019).

    [63] He L, Lin Z, Wen Y, et al. An inverse design method combining particle swarm optimization wavefront matching method f multiplane light conversion [C]Optical Society of America, 2020: FM7D.5.

    [64] Lin Z, Wen Y, Chen Y, et al. Transmissive multiplane light conversion f demultiplexing bital angular momentum modes [C]Optical Society of America, 2020: SF1J. 5.

    [65] Bian Y, Li Y, Li W, et al. Modes multiplexing conversion based on multiplane light conversion [C]Optical Society of America, 2020: M4A.252.

    [66] Q Zhao, S Hao, Y Wang, et al. Orbital angular momentum detection based on diffractive deep neural network. Optics Communications, 443, 245-249(2019).

    [67] Z Huang, P Wang, J Liu, et al. All-optical signal processing of vortex beams with diffractive deep neural networks. Physical Review Applied, 15, 014037(2021).

    [68] S N Khonina, V V Kotlyar, R V Skidanov, et al. Gauss–Laguerre modes with different indices in prescribed diffraction orders of a diffractive phase element. Optics Communications, 175, 301-308(2000).

    [69] G Gibson, J Courtial, M J Padgett, et al. Free-space information transfer using light beams carrying orbital angular momentum. Optics Express, 12, 5448-5456(2004).

    [70] M P Lavery, G C Berkhout, J Courtial, et al. Measurement of the light orbital angular momentum spectrum using an optical geometric transformation. Journal of Optics, 13, 064006(2011).

    [71] M Malik, M Mirhosseini, M P Lavery, et al. Direct measurement of a 27-dimensional orbital-angular-momentum state vector. Nature Communications, 5, 4115(2014).

    [72] V Potoček, F M Miatto, M Mirhosseini, et al. Quantum hilbert hotel. Physical Review Letters, 115, 160505(2015).

    [73] G Ruffato, M Massari, F Romanato. Multiplication and division of the orbital angular momentum of light with diffractive transformation optics. Light: Science & Applications, 8, 1-13(2019).

    [74] S Takashima, H Kobayashi, K Iwashita. Integer multiplier for the orbital angular momentum of light using a circular-sector transformation. Physical Review A, 100, 063822(2019).

    [75] Y Wen, I Chremmos, Y Chen, et al. Arbitrary multiplication and division of the orbital angular momentum of light. Physical Review Letters, 124, 213901(2020).

    [76] H Zhou, J Dong, J Wang, et al. Orbital angular momentum divider of light. IEEE Photonics Journal, 9, 1-8(2017).

    [77] Z Zhao, Y Ren, G Xie, et al. Invited Article: Division and multiplication of the state order for data-carrying orbital angular momentum beams. APL Photonics, 1, 090802(2016).

    [78] Ruffato G, Romanato F. Algebra of light: multiplication division of bital angular momentum [C]2020 Italian Conference on Optics Photonics (ICOP), IEEE, 2020: 14.

    [79] Y Wen, I Chremmos, Y Chen, et al. Compact and high-performance vortex mode sorter for multi-dimensional multiplexed fiber communication systems. Optica, 7, 254-262(2020).

    [80] R Fickler, R Lapkiewicz, M Huber, et al. Interface between path and orbital angular momentum entanglement for high-dimensional photonic quantum information. Nature Communications, 5, 5502(2014).

    [81] G F Walsh. Pancharatnam-Berry optical element sorter of full angular momentum eigenstate. Optics Express, 24, 6689-6704(2016).

    [82] G Ruffato, E Brasselet, M Massari, et al. Electrically activated spin-controlled orbital angular momentum multiplexer. Applied Physics Letters, 113, 011109(2018).

    [83] Fontaine N K, Ryf R, Chen H, et al. LaguerreGaussian mode sters of high spatial mode count [C]International Society f Optics Photonics, 2020: 1120319.

    Zhensong Wan, Chaoyang Wang, Qiang Liu, Xing Fu. Research progress on technologies and applications of geometric coordinate transformation of vortex beam (Invited)[J]. Infrared and Laser Engineering, 2021, 50(9): 20210445
    Download Citation