• Laser & Optoelectronics Progress
  • Vol. 56, Issue 17, 170606 (2019)
Haitao Guo1、*, Jian Cui1、2, Yantao Xu1、2, and Xusheng Xiao1
Author Affiliations
  • 1 State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an, Shaanxi 710119, China
  • 2 University of Chinese Academy of Sciences, Beijing 100045, China
  • show less
    DOI: 10.3788/LOP56.170606 Cite this Article Set citation alerts
    Haitao Guo, Jian Cui, Yantao Xu, Xusheng Xiao. Progress in Preparation and Applications of Low-Loss Chalcogenide Infrared Fibers[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170606 Copy Citation Text show less
    References

    [1] Sanghera J S, Aggarwal I D, Shaw L B et al. Nonlinear properties of chalcogenide glass fibers[J]. Journal of Optoelectronics and Advanced Materials, 8, 2148-2155(2006).

    [2] Abedin K S. Observation of strong stimulated Brillouin scattering in single-mode As2Se3 chalcogenide fiber[J]. Optics Express, 13, 10266-10271(2005).

    [3] Thielen P A, Shaw L B, Pureza P C et al. Small-core As-Se fiber for Raman amplification[J]. Optics Letters, 28, 1406-1408(2003).

    [4] Kapany N S, Simms R J. Recent developments in infrared fiber optics[J]. Infrared Physics, 5, 69-80(1965).

    [8] Snopatin G E, Shiryaev V S, Plotnichenko V G et al. High-purity chalcogenide glasses for fiber optics[J]. Inorganic Materials, 45, 1439-1460(2009).

    [9] Shiryaev V S, Mishinov S V, Churbanov M F. Investigation of adhesion of chalcogenide glasses to silica glass[J]. Journal of Non-Crystalline Solids, 408, 71-75(2015).

    [10] Mishinov S V, Churbanov M F, Gorokhov A N et al. Adhesion mechanism of destruction of silica-glass surface during the preparation and treatment of optical glassy arsenic chalcogenides[J]. Inorganic Materials, 52, 716-720(2016).

    [11] Nguyen V Q, Sanghera J S, Cole B et al. Fabrication of arsenic sulfide optical fiber with low hydrogen impurities[J]. Journal of the American Ceramic Society, 85, 2056-2058(2002).

    [12] Nguyen V Q, Sanghera J S, Pureza P et al. Fabrication of arsenic selenide optical fiber with low hydrogen impurities[J]. Journal of the American Ceramic Society, 85, 2849-2851(2002).

    [13] Troles J, Shiryaev V, Churbanov M et al. GeSe4 glass fibres with low optical losses in the mid-IR[J]. Optical Materials, 32, 212-215(2009).

    [14] Xu Y T, Guo H T, Yan X T et al. Preparation and applications of low-loss As-S chalcogenide glass fibers[J]. Journal of Inorganic Materials, 30, 97-101(2015).

    [15] Xu Y T, Guo H T, Lu M et al. Preparation and properties of low-loss core-cladding structural Ge-Sb-Se chalcogenide glass fibers[J]. Infrared and Laser Engineering, 44, 182-187(2015).

    [16] Churbanov M F, Snopatin G E, Shiryaev V S et al. Recent advances in preparation of high-purity glasses based on arsenic chalcogenides for fiber optics[J]. Journal of Non-Crystalline Solids, 357, 2352-2357(2011).

    [17] Dianov E M, Petrov M Y, Plotnichenko V G et al. Estimate of the minimum optical losses in chalcogenide glasses[J]. Soviet Journal of Quantum Electronics, 12, 498-499(1982).

    [18] Lines M E. Scattering losses in optic fiber materials. II.numerical estimates[J]. Journal of Applied Physics, 55, 4058-4063(1984).

    [19] Kanamori T, Terunuma Y, Takahashi S et al. Chalcogenide glass fibers for mid-infrared transmission[J]. Journal of Lightwave Technology, 2, 607-613(1984).

    [20] Velmuzhov A P, Sibirkin A A, Shiryaev V S et al. Preparation of Ge-Sb-SI glass system via volatile iodides[J]. Journal of Optoelectronics and Advanced Materials, 13, 936-939(2011).

    [21] Velmuzhov A P, Sibirkin A A, Shiryaev V S et al. Preparation of glasses in the Ge-Sb-Se-I system via volatile iodides[J]. Journal of Non-Crystalline Solids, 405, 100-103(2014).

    [22] Velmuzhov A P, Sukhanov M V, Shiryaev V S et al. Preparation of special purity Ge-S-I and Ge-Se-I glasses[J]. Optical Materials, 67, 59-63(2017).

    [23] Shiryaev V S, Velmuzhov A P, Tang Z Q et al. Preparation of high purity glasses in the Ga-Ge-As-Se system[J]. Optical Materials, 37, 18-23(2014).

    [24] Karaksina E V, Shiryaev V S, Kotereva T V et al. Preparation of high-purity Pr 3+ doped Ge-Ga-Sb-Se glasses with intensive middle infrared luminescence [J]. Journal of Luminescence, 170, 37-41(2016).

    [25] Karaksina E V, Shiryaev V S, Kotereva T V et al. Preparation of high-purity Pr 3+ doped Ge-As-Se-In-I glasses for active mid-infrared optics [J]. Journal of Luminescence, 177, 275-279(2016).

    [26] Shiryaev V S, Karaksina E V, Kotereva T V et al. Preparation and investigation of Pr 3+-doped Ge-Sb-Se-In-I glasses as promising material for active mid-infrared optics [J]. Journal of Luminescence, 183, 129-134(2017).

    [27] Katsuyama T, Satoh S, Matsumura H. Fabrication of high-purity chalcogenide glasses by chemical vapor deposition[J]. Journal of Applied Physics, 59, 1446-1449(1986).

    [28] Huang C C, Hewak D W. High-purity germanium-sulphide glass for optoelectronic applications synthesised by chemical vapour deposition[J]. Electronics Letters, 40, 863-865(2004).

    [29] Vasil'ev A V, Devyatykh G G, Dianov E M et al. . Two-layer chalcogenide-glass optical fibers with optical losses below 30 dB/km[J]. Quantum Electronics, 23, 89-90(1993).

    [30] Mossadegh R, Sanghera J S, Schaafsma D et al. Fabrication of single-mode chalcogenide optical fiber[J]. Journal of Lightwave Technology, 16, 214-217(1998).

    [31] Karaksina E V, Shiryaev V S, Churbanov M F et al. Core-clad Pr 3+-doped Ga(In)-Ge-As-Se-(I) glass fibers: preparation, investigation, simulation of laser characteristics [J]. Optical Materials, 72, 654-660(2017).

    [32] Nishii J, Yamashita T, Yamagishi T. Chalcogenide glass fiber with a core-cladding structure[J]. Applied Optics, 28, 5122-5127(1989).

    [33] Nishii J, Morimoto S, Inagawa I et al. Recent advances and trends in chalcogenide glass fiber technology: a review[J]. Journal of Non-Crystalline Solids, 140, 199-208(1992).

    [34] Shiryaev V S, Churbanov M F, Snopatin G E et al. Preparation of low-loss core-clad As-Se glass fibers[J]. Optical Materials, 48, 222-225(2015).

    [35] Churbanov M F, Shiryaev V S, Suchkov A I et al. High-purity As-S-Se and As-Se-Te glasses and optical fibers[J]. Inorganic Materials, 43, 441-447(2007).

    [36] Wang Z X, Guo H T, Xiao X S et al. Synthesis and spectroscopy of high concentration dysprosium doped GeS2-Ga2S3-CdI2 chalcohalide glasses and fiber fabrication[J]. Journal of Alloys and Compounds, 692, 1010-1017(2017).

    [37] Zhang B, Zhai C C, Qi S S et al. High-resolution chalcogenide fiber bundles for infrared imaging[J]. Optics Letters, 40, 4384-4387(2015).

    [38] Zhang B, Guo W, Yu Y et al. Low loss, high NA chalcogenide glass fibers for broadband mid-infrared supercontinuum generation[J]. Journal of the American Ceramic Society, 98, 1389-1392(2015).

    [39] Itoh K, Miura K, Masuda I et al. Low-loss fluorozirco-aluminate glass fiber[J]. Journal of Non-Crystalline Solids, 167, 112-116(1994).

    [40] Furniss D, Seddon A B. Extrusion of gallium lanthanum sulfide glasses for fiber-optic preforms[J]. Journal of Materials Science Letters, 17, 1541-1542(1998).

    [41] Sun Y N, Dai S X, Zhang P Q et al. Fabrication and characterization of multimaterial chalcogenide glass fiber tapers with high numerical apertures[J]. Optics Express, 23, 23472-23483(2015).

    [42] Xue Z G, Li Q L, Chen P et al. Mid-infrared supercontinuum in well-structured As-Se fibers based on peeled-extrusion[J]. Optical Materials, 89, 402-407(2019).

    [43] Liu S, Tang J Z, Liu Z J et al. Fabrication and properties of low-loss chalcogenide optical fiber based on the extrusion method[J]. Acta Optica Sinica, 36, 1006002(2016).

    [44] Tugendhaft I, Bornstein A, Weissman Y et al. Directional multimode fiber couplers in the mid-infrared[J]. Optical Engineering, 34, 2846-2849(1995).

    [45] Schaafsma D T, Moon J A, Sanghera J S et al. Fused taper infrared optical fiber couplers in chalcogenide glass[J]. Journal of Lightwave Technology, 15, 2242-2245(1997).

    [46] Gattass R R, Shaw L B, Kung F H et al. Infrared fiber N×1 multimode combiner[J]. IEEE Photonics Journal, 5, 7100905(2013).

    [47] Daniels A, Liepmann T W. Fiber optically coupled infrared focal plane array system for use in missile warning receiver applications[J]. Proceedings of SPIE, 3701, 118-130(1999).

    [48] Li L B, Feng Y T, Wang S et al. Four dimensional spectral imager with integral field fiber bundle[J]. Acta Optica Sinica, 34, 0511004(2014).

    [49] Hilton A R. Infrared imaging bundle development at amorphous materials[J]. Proceedings of SPIE, 3849, 60-66(1999).

    [50] Lü B Y, Yang K W, Xue H K et al. 2 meter length IR coherent bundle of As-Se-Te glass fibers[J]. Infrared and Laser Engineering, 30, 357-360(2001).

    [51] Yang K W, Wei G S, Wu P L. Image bundle of As-S glass infrared fibers[J]. Journal of Applied Optics, 20, 32-35(1999).

    [52] Zhan H, Yan X T, Guo H T et al. Line-plane-switching infrared bundle for push-broom sensing fiber imaging[J]. Optical Materials, 42, 491-494(2015).

    [53] Asobe M, Ohara T, Yokohama I et al. Fabrication of Bragg grating in chalcogenide glass fibre using the transverse holographic method[J]. Electronics Letters, 32, 1611-1613(1996).

    [54] Florea C, Sanghera J S, Shaw B et al. Fiber Bragg gratings in As2S3 fibers obtained using a 0/-1 phase mask[J]. Optical Materials, 31, 942-944(2009).

    [55] Bernier M, El-Amraoui M, Couillard J F et al. Writing of Bragg gratings through the polymer jacket of low-loss As2S3 fibers using femtosecond pulses at 800 nm[J]. Optics Letters, 37, 3900-3902(2012).

    [56] Bernier M, Fortin V, El-Amraoui M et al. 3.77 μm fiber laser based on cascaded Raman gain in a chalcogenide glass fiber[J]. Optics Letters, 39, 2052-2055(2014).

    [57] Nemanich R J. Low-frequency inelastic light scattering from chalcogenide glasses and alloys[J]. Physical Review B, 16, 1655-1674(1977).

    [58] Thielen P A, Shaw L B, Sanghera J S et al. Modeling of a mid-IR chalcogenide fiber Raman laser[J]. Optics Express, 11, 3248-3253(2003).

    [59] Jackson S D, Anzueto-Sánchez G. Chalcogenide glass Raman fiber laser[J]. Applied Physics Letters, 88, 221106(2006).

    [60] Bernier M, Fortin V, Caron N et al. Mid-infrared chalcogenide glass Raman fiber laser[J]. Optics Letters, 38, 127-129(2013).

    [61] Ogusu K, Li H P, Kitao M. Brillouin-gain coefficients of chalcogenide glasses[J]. Journal of the Optical Society of America B, 21, 1302-1304(2004).

    [62] Abedin K S. Single-frequency Brillouin lasing using single-mode As2Se3 chalcogenide fiber[J]. Optics Express, 14, 4037-4042(2006).

    [63] Tow K H, Léguillon Y, Besnard P et al. Relative intensity noise and frequency noise of a compact Brillouin laser made of As38Se62 suspended-core chalcogenide fiber[J]. Optics Letters, 37, 1157-1159(2012).

    [64] Quimby R S, Shaw L B, Sanghera J S et al. Modeling of cascade lasing in Dy∶chalcogenide glass fiber laser with efficient output at 4.5 μm[J]. IEEE Photonics Technology Letters, 20, 123-125(2008).

    [65] Sujecki S, Sójka L. Bere -Pawlik E, et al. Modelling of a simple Dy 3+ doped chalcogenide glass fibre laser for mid-infrared light generation [J]. Optical and Quantum Electronics, 42, 69-79(2010).

    [66] Falconi M C, Palma G, Starecki F et al. Design of an efficient pumping scheme for mid-IR Dy 3+∶Ga5Ge20Sb10S65 PCF fiber laser [J]. IEEE Photonics Technology Letters, 28, 1984-1987(2016).

    [67] Xiao X S, Xu Y T, Guo H T et al. Theoretical modeling of 4.3 μm mid-infrared lasing in Dy 3+-doped chalcogenide fiber lasers [J]. IEEE Photonics Journal, 10, 1501011(2018).

    [68] Wei K. Synthesis and characterization of rare-earth doped chalcogenide glasses[D]. New Jersey: The State University of New Jersey(1994).

    [69] Heo J, Shin Y B. Absorption and mid-infrared emission spectroscopy of Dy 3+ in Ge-As(or Ga)-S glasses [J]. Journal of Non-Crystalline Solids, 196, 162-167(1996).

    [70] Ohishi Y, Mori A, Kanamori T et al. Fabrication of praseodymium-doped arsenic sulfide chalcogenide fiber for 1.3-μm fiber amplifiers[J]. Applied Physics Letters, 65, 13-15(1994).

    [71] Samson B N, Schweizer T, Moore R C et al. Neodymium doped chalcogenide glass fibre laser. [C]//Technical Digest CLEO/Pacific Rim'97 Pacific Rim Conference on Lasers and Electro-Optics, July 14-18, 1997, Chiba, Japan. New York: IEEE, 51-52(1997).

    [72] Shephard J D, Kangley R I, Hand R J et al. Analysis of oxide content in gallium lanthanum sulphide (GLS) glasses by infrared absorption spectroscopy[J]. Physics and Chemistry of Glasses, 44, 267-271(2003).

    [73] Seddon A B, Tang Z Q, Furniss D et al. Progress in rare-earth-doped mid-infrared fiber lasers[J]. Optics Express, 18, 26704-26719(2010).

    [74] Tang Z Q, Furniss D, Fay M et al. Mid-infrared photoluminescence in small-core fiber of praseodymium-ion doped selenide-based chalcogenide glass[J]. Optical Materials Express, 5, 870-886(2015).

    [75] Sojka L, Tang Z, Furniss D et al. Mid-infrared emission in Tb 3+-doped selenide glass fiber [J]. Journal of the Optical Society of America B, 34, A70-A79(2017).

    [76] Chahal R, Starecki F, Doualan J L et al. Nd 3+∶Ga-Ge-Sb-S glasses and fibers for luminescence in mid-IR: synthesis, structural characterization and rare earth spectroscopy [J]. Optical Materials Express, 8, 1650-1671(2018).

    [77] Starecki F, Abdellaoui N, Braud A et al. 8 μm luminescence from a Tb 3+ GaGeSbSe fiber [J]. Optics Letters, 43, 1211-1214(2018).

    [78] Yang A P, Qiu J H, Zhang M J et al. Mid-infrared luminescence of Dy 3+ ions in modified Ga-Sb-S chalcogenide glasses and fibers [J]. Journal of Alloys and Compounds, 695, 1237-1242(2017).

    [79] Cui J, Xiao X S, Xu Y T et al. Mid-infrared emissions of Dy 3+ doped Ga-As-S chalcogenide glasses and fibers and their potential for a 4.2 μm fiber laser [J]. Optical Materials Express, 8, 2089-2102(2018).

    [80] Tao G M, Guo H T, Feng L et al. Formation and properties of a novel heavy-metal chalcogenide glass doped with a high dysprosium concentration[J]. Journal of the American Ceramic Society, 92, 2226-2229(2009).

    [81] Guo H T, Liu L, Wang Y Q et al. Host dependence of spectroscopic properties of Dy 3+-doped and Dy 3+, Tm 3+-codped Ge-Ga-S-CdI2 chalcohalide glasses [J]. Optics Express, 17, 15350-15358(2009).

    [82] Chen H Y, Cui X X, Guo H T et al. Mid-infrared luminescence of Pr 3+-doped GeS2-Ga2S3-PbI2 bulk chalcohalide glasses [J]. Science of Advanced Materials, 9, 353-358(2017).

    [83] Meng W, Xu Y T, Guo H T et al. Investigation of mid-IR luminescence properties and energy transfer in Dy 3+-doped and Dy 3+, Tm 3+-codoped chalcohalide glasses [J]. Optical Materials, 35, 1499-1503(2013).

    [84] Guo H T, Xu Y T, Chen H Y et al. Near- and mid-infrared emissions of Dy 3+ doped and Dy 3+/Tm 3+co-doped lead cesium iodide modified chalcohalide glasses [J]. Journal of Luminescence, 148, 10-17(2014).

    [85] Tang Z Q, Furniss D, Neate N C et al. Dy 3+-doped selenide chalcogenide glasses: influence of Dy 3+ dopant-additive and containment [J]. Journal of the American Ceramic Society, 99, 2283-2291(2016).

    [86] Shaw L B, Nguyen V Q, Sanghera J S et al. IR supercontinuum generation in As-Se photonic crystal fiber. [C]//Advanced Solid-State Photonics (TOPS), February 6-9, 2005, Vienna, Austria. Washington, DC: OSA, 864-868(2005).

    [87] Gattass R R, Shaw L B, Nguyen V Q et al. All-fiber chalcogenide-based mid-infrared supercontinuum source[J]. Optical Fiber Technology, 18, 345-348(2012).

    [88] Petersen C R, Møller U, Kubat I et al. Mid-infrared supercontinuum covering the 1.4-13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre[J]. Nature Photonics, 8, 830-834(2014).

    [89] Cheng T L, Nagasaka K, Tuan T H et al. Mid-infrared supercontinuum generation spanning 2.0 to 15.1 μm in a chalcogenide step-index fiber[J]. Optics Letters, 41, 2117-2120(2016).

    [90] Zhao Z M, Wu B, Wang X S et al. Mid-infrared supercontinuum covering 2.0-16 μm in a low-loss telluride single-mode fiber[J]. Laser & Photonics Reviews, 11, 1700005(2017).

    [91] Keirsse J, Boussard-Plédel C, Loréal O et al. IR optical fiber sensor for biomedical applications[J]. Vibrational Spectroscopy, 32, 23-32(2003).

    [92] BureauB, Zhang XH, SmektalaF, et al. Recent advances in chalcogenide glasses[J]. Journal of Non-Crystalline Solids, 2004, 345/346: 276-283.

    [93] Bureau B, Boussard C, Cui S et al. Chalcogenide optical fibers for mid-infrared sensing[J]. Optical Engineering, 53, 027101(2014).

    [94] MichelK, BureauB, PouvreauC, et al. Development of a chalcogenide glass fiber device for in situ pollutant detection[J]. Journal of Non-Crystalline Solids, 2003, 326/327: 434-438.

    [95] Michel K, Bureau B, Boussard-Plédel C et al. Monitoring of pollutant in waste water by infrared spectroscopy using chalcogenide glass optical fibers[J]. Sensors and Actuators B: Chemical, 101, 252-259(2004).

    [96] Wang X M, Yang C F, Dai S X et al. Spectroscopic analysis of ethanol solution detection with Ge15Sb20Se65 chalcogenide glass tapered fiber[J]. Acta Optica Sinica, 38, 0606001(2018).

    [97] Charpentier F, Bureau B, Troles J et al. Infrared monitoring of underground CO2 storage using chalcogenide glass fibers[J]. Optical Materials, 31, 496-500(2009).

    [98] Maurugeon S, Bureau B, Boussard-Plédel C et al. Selenium modified GeTe4 based glasses optical fibers for far-infrared sensing[J]. Optical Materials, 33, 660-663(2011).

    [99] Starecki F, Charpentier F, Doualan J L et al. Mid-IR optical sensor for CO2 detection based on fluorescence absorbance of Dy 3+∶Ga5Ge20Sb10S65 fibers [J]. Sensors and Actuators B: Chemical, 207, 518-525(2015).

    [100] Ari J, Starecki F, Boussard-Plédel C et al. Rare-earth-doped chalcogenide glasses for mid-IR gas sensor applications[J]. Proceedings of SPIE, 10100, 101000Q(2017).

    Haitao Guo, Jian Cui, Yantao Xu, Xusheng Xiao. Progress in Preparation and Applications of Low-Loss Chalcogenide Infrared Fibers[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170606
    Download Citation