• Laser & Optoelectronics Progress
  • Vol. 58, Issue 15, 1516028 (2021)
Zhongtao Lin1, Lianchun Long1, Yang Yang2、*, and Wuguo Liu2
Author Affiliations
  • 1Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
  • 2Institute of Physics, Chinese Academy of Sciences, Beijing 100089, China
  • show less
    DOI: 10.3788/LOP202158.1516028 Cite this Article Set citation alerts
    Zhongtao Lin, Lianchun Long, Yang Yang, Wuguo Liu. Numerical Simulation of the Thermal Stresses of Layered Molybdenum Disulfide[J]. Laser & Optoelectronics Progress, 2021, 58(15): 1516028 Copy Citation Text show less
    Schematic of SiO2 based MoS2 film model. (a) Schematic of substrate supported MoS2 model;(b) schematic of the suspended MoS2 model
    Fig. 1. Schematic of SiO2 based MoS2 film model. (a) Schematic of substrate supported MoS2 model;(b) schematic of the suspended MoS2 model
    Thermal expansion coefficients of MoS2 and SiO2. (a) Thermal expansion coefficient as a function of temperature; (b) gradient of thermal expansion coefficient changed with temperature
    Fig. 2. Thermal expansion coefficients of MoS2 and SiO2. (a) Thermal expansion coefficient as a function of temperature; (b) gradient of thermal expansion coefficient changed with temperature
    Thermal stress distribution. (a) Suspended MoS2 at 293 K; (b) substrate supported MoS2 at 293 K; (c) suspended MoS2 at 200 K; (d) substrate supported MoS2 at 200 K; (e) suspended MoS2 at 100 K; (f) substrate supported MoS2 at 100 K
    Fig. 3. Thermal stress distribution. (a) Suspended MoS2 at 293 K; (b) substrate supported MoS2 at 293 K; (c) suspended MoS2 at 200 K; (d) substrate supported MoS2 at 200 K; (e) suspended MoS2 at 100 K; (f) substrate supported MoS2 at 100 K
    Thermal stress distribution in MoS2 from the center to the edge
    Fig. 4. Thermal stress distribution in MoS2 from the center to the edge
    Temperature dependence of the thermal stress at central point of MoS2
    Fig. 5. Temperature dependence of the thermal stress at central point of MoS2
    Thickness dependence of the thermal stress at the central point of MoS2
    Fig. 6. Thickness dependence of the thermal stress at the central point of MoS2
    Thermal stress distribution at central point of MoS2. (a)The dependence of the thermal stress at central point on the thickness of substrate;(b) gradient of the thermal stress at central point as a function of the thickness of substrate
    Fig. 7. Thermal stress distribution at central point of MoS2. (a)The dependence of the thermal stress at central point on the thickness of substrate;(b) gradient of the thermal stress at central point as a function of the thickness of substrate
    MaterialMoS2SiO2
    Thermal expansion coefficient /K-110-7+3.5×10-8×T-3.9×10-11×T2,  100T50030-1.7×10-6+1.5×10-8×T-3.3×10-11×T2+3.2×10-14×T3-1.2×10-17×T4,  100T500

    Thermal conductivity /

    (W·m-1·K-1

    104.7310.1+4.3×10-5×T2-2.3×10-7×T3+3×10-10×T4,  50T<280-0.1-5.3×10-5×T2+7.6×10-8×T3-5.06×10-11×T4+1.3×10-14×T5,   280T500
    Density /(Kg·m-34800322219.4-4.7×10-5×T2+7×10-8×T3-11×10-11×T4+1.4×10-14×T5,   100T500
    Young modulus /GPa229337.8-8×107×T+1200039×T2-7440.2×T322×10-6×T4,  100T1707×10-10+1.2×107×T+11447.5×T2-26×T3-3×10-6×T5,   170T500
    Poisson's ratio0.25330.2-3.5×10-4×T+5.4×10-6×T2-2.8×10-8×T3+4.9×10-11×T4,  100T<1700.1+2.3×10-4×T-9.3×10-7×T2+1.8×10-9×T3-1.6×10-12×T4+5.4×10-16×T5,  170T500
    Heat capacity at constant pressure /(J·kg-1·K-1-235.1+5.5×T-0.01×T2+4×10-5×T3-4.6×10-8×T4+2.9×10-11×T5-7.4×10-15×T6,  100T50061.5+1.9×T-1.7×10-5×T3+1.9×10-8×T4-7.1×10-12×T5,  100T500
    Table 1. Physical properties of materials
    Zhongtao Lin, Lianchun Long, Yang Yang, Wuguo Liu. Numerical Simulation of the Thermal Stresses of Layered Molybdenum Disulfide[J]. Laser & Optoelectronics Progress, 2021, 58(15): 1516028
    Download Citation