• Laser & Optoelectronics Progress
  • Vol. 60, Issue 1, 0116004 (2023)
Wenbin Ji1、2、*, Chuncheng Liu1、2, Shijie Dai1、2, and Riqing Deng1、2
Author Affiliations
  • 1State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Tianjin 300130, China
  • 2School of Mechanical Engineering, Hebei University of Technology, Tianjin 300130, China
  • show less
    DOI: 10.3788/LOP212855 Cite this Article Set citation alerts
    Wenbin Ji, Chuncheng Liu, Shijie Dai, Riqing Deng. Effect of Substrate Material and Powder Feeding Speed on M2 High-Speed Steel Using Selective Laser Melting[J]. Laser & Optoelectronics Progress, 2023, 60(1): 0116004 Copy Citation Text show less
    References

    [1] Yang Y Q, Chen J, Song C H et al. Current status and progress on technology of selective laser melting of metal parts[J]. Laser & Optoelectronics Progress, 55, 011401(2018).

    [2] Gu D D, Zhang H M, Chen H Y et al. Laser additive manufacturing of high-performance metallic aerospace components[J]. Chinese Journal of Lasers, 47, 0500002(2020).

    [3] Zou T C, Zhu H, Chen M Y et al. microstructure and tensile properties of SiC reinforced aluminum matrix composite prepared by selective laser melting[J]. Chinese Journal of Lasers, 48, 1002123(2021).

    [4] Hu Z H, Song C H, Liu L Q et al. Research progress of selective laser melting of nitinol[J]. Chinese Journal of Lasers, 47, 1202005(2020).

    [5] Sanaei N, Fatemi A. Defects in additive manufactured metals and their effect on fatigue performance: a state-of-the-art review[J]. Progress in Materials Science, 117, 100724(2021).

    [6] Huang J G, Yu H, Xu Z F et al. Effects of processing parameters on performance of TC4 alloy samples by selective laser melting[J]. Special Casting & Nonferrous Alloys, 38, 375-379(2018).

    [7] Cherry J A, Davies H M, Mehmood S et al. Investigation into the effect of process parameters on microstructural and physical properties of 316L stainless steel parts by selective laser melting[J]. The International Journal of Advanced Manufacturing Technology, 76, 869-879(2015).

    [8] Zong X W, Liu W J, Zhang S Z et al. microstructure and crystal orientation of nickel-based superalloy GH3536 by selective laser melting[J]. Rare Metal Materials and Engineering, 49, 3182-3188(2020).

    [9] Zhang J L, Song B, Wei Q S et al. A review of selective laser melting of aluminum alloys: processing, microstructure, property and developing trends[J]. Journal of Materials Science & Technology, 35, 270-284(2019).

    [10] Liverani E, Toschi S, Ceschini L et al. Effect of selective laser melting (SLM) process parameters on microstructure and mechanical properties of 316L austenitic stainless steel[J]. Journal of Materials Processing Technology, 249, 255-263(2017).

    [11] Khorasani A, Gibson I, Awan U S et al. The effect of SLM process parameters on density, hardness, tensile strength and surface quality of Ti-6Al-4V[J]. Additive Manufacturing, 25, 176-186(2019).

    [12] Zhang Y, Gu D D, Shen L D et al. study on selective laser melting additive manufacturing process of INCONEL Ni-based superalloy[J]. Electromachining & Mould, 38-43(2014).

    [13] Yao Y S, Tang J P, Wang J et al. Forming technology and properties of 316L stainless steel by selective laser melting[J]. Laser & Optoelectronics Progress, 58, 0114006(2021).

    [14] Tapia G, Elwany A H, Sang H. Prediction of porosity in metal-based additive manufacturing using spatial Gaussian process models[J]. Additive Manufacturing, 12, 282-290(2016).

    [15] Liu S W, Chang S J, Zhu H H et al. Effect of substrate material on the molten pool characteristics in selective laser melting of thin wall parts[J]. The International Journal of Advanced Manufacturing Technology, 105, 3221-3231(2019).

    [16] Griffith M L, Schlienger M E, Harwell L D et al. Understanding thermal behavior in the LENS process[J]. Materials & Design, 20, 107-113(1999).

    [17] Yang J, Huang W D, Yang H O. Study on the planar residual stress distribution of laser rapid forming 316L shect[J]. Applied Laser, 25, 151-154(2005).

    [18] Ding H, Liu R T, Xiong X et al. Effects of substrate temperature on microstructure and property of M2 high-speed steel prepared by selective laser melting[J]. Materials Science and Engineering of Powder Metallurgy, 23, 511-517(2018).

    [19] Wu W D, Xiong X, Liu R T et al. Effects of carbon content on microstructure and properties of M2 high speed steel prepared by elemental powder method[J]. Materials Science and Engineering of Powder Metallurgy, 24, 273-281(2019).

    [20] Kempen K, Vrancken B, Buls S et al. Selective laser melting of crack-free high density M2 high speed steel parts by baseplate preheating[J]. Journal of Manufacturing Science and Engineering, 136, 061026(2014).

    [21] Zhang J, Li S, Wei Q S et al. Cracking behavior and inhibiting process of Inconel 625 alloy formed by selective laser melting[J]. Chinese Journal of Rare Metals, 39, 961-966(2015).

    [22] Liu Z Y, Loh N H, Khor K A et al. Sintering of injection molded M2 high-speed steel[J]. Materials Letters, 45, 32-38(2000).

    [23] Wang Z N, Ba X H, Li D M et al. Influence of residual stress on mechanical test of metal materials[J]. Journal of Henan Vocation-Technical Teachers College, 24, 50-52(1996).

    Wenbin Ji, Chuncheng Liu, Shijie Dai, Riqing Deng. Effect of Substrate Material and Powder Feeding Speed on M2 High-Speed Steel Using Selective Laser Melting[J]. Laser & Optoelectronics Progress, 2023, 60(1): 0116004
    Download Citation