• Laser & Optoelectronics Progress
  • Vol. 56, Issue 17, 170610 (2019)
Zhijun Ma1、*, Bofan Jiang1, Qi Xu1, and Jianrong Qiu1、2、**
Author Affiliations
  • 1 State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
  • 2 State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
  • show less
    DOI: 10.3788/LOP56.170610 Cite this Article Set citation alerts
    Zhijun Ma, Bofan Jiang, Qi Xu, Jianrong Qiu. Fabrication and Applications of Metal Nanocrystals Hybridized Optical Fibers[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170610 Copy Citation Text show less
    References

    [1] Kao K C, Hockham G A. Dielectric-fibre surface waveguides for optical frequencies[J]. Proceedings of the Institution of Electrical Engineers, 113, 1151-1158(1966).

    [2] Rowe H L, Shephard J D, Furniss D et al. The application of the mid-infrared spectral region in medical surgery: chalcogenide glass optical fibre for 10.6 μm laser transmission[J]. Proceedings of SPIE, 6852, 685208(2008).

    [3] Caspary R, Schutz S, Mohl S et al. Polymer optical fiber amplifiers. [C]∥14th International Confrence on Transparent Optical Networks(ICTON), July 2-5, 2012, Coventry, UK. New York: IEEE, 12908201(2012).

    [4] Knight J C, Birks T A. Russell P St J, et al. All-silica single-mode optical fiber with photonic crystal cladding: errata[J]. Optics Letters, 22, 484-485(1997).

    [5] Andrew P, Barnes W L. Energy transfer across a metal film mediated by surface plasmon polaritons[J]. Science, 306, 1002-1005(2004).

    [6] Hutter E, Fendler J H. Exploitation of localized surface plasmon resonance[J]. Advanced Materials, 16, 1685-1706(2004).

    [7] Moskovits M. Surface-enhanced spectroscopy[J]. Reviews of Modern Physics, 57, 783-826(1985).

    [8] Daniel M C, Astruc D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology[J]. Chemical Reviews, 104, 293-346(2004).

    [9] Lal S, Link S, Halas N J. Nano-optics from sensing to waveguiding[J]. Nature Photonics, 1, 641-648(2007).

    [10] Polwart E, Keir R L, Davidson C M et al. Novel SERS-active optical fibers prepared by the immobilization of silver colloidal particles[J]. Applied Spectroscopy, 54, 522-527(2000).

    [11] Andrade G F S, Fan M K, Brolo A G. Multilayer silver nanoparticles-modified optical fiber tip for high performance SERS remote sensing[J]. Biosensors and Bioelectronics, 25, 2270-2275(2010).

    [12] Cennamo N. D'Agostino G, Donà A, et al. Localized surface plasmon resonance with five-branched gold nanostars in a plastic optical fiber for bio-chemical sensor implementation[J]. Sensors, 13, 14676-14686(2013).

    [13] Chen H, Tian F, Chi J M et al. Advantage of multi-mode sapphire optical fiber for evanescent-field SERS sensing[J]. Optics Letters, 39, 5822-5825(2014).

    [14] Spasopoulos D, Kaziannis S, Danakas S et al. LSPR based optical fiber sensors treated with nanosecond laser irradiation for refractive index sensing[J]. Sensors and Actuators B: Chemical, 256, 359-366(2018).

    [15] Cox F M, Argyros A. Large M C J, et al. Surface enhanced Raman scattering in a hollow core microstructured optical fiber[J]. Optics Express, 15, 13675-13681(2007).

    [16] Han Y, Tan S L. Oo M K K, et al. Towards full-length accumulative surface-enhanced Raman scattering-active photonic crystal fibers[J]. Advanced Materials, 22, 2647-2651(2010).

    [17] Siarkowska A, Chychłowski M, Budaszewski D et al. Thermo- and electro-optical properties of photonic liquid crystal fibers doped with gold nanoparticles[J]. Beilstein Journal of Nanotechnology, 8, 2790-2801(2017).

    [18] Guo Y, Song B B, Huang W et al. LSPR sensor employing side-polished suspend-core microstructured optical fiber with a silver nanorod[J]. IEEE Sensors Journal, 19, 956-961(2019).

    [19] Sebastian S, Ajina C. Vallabhan C P G, et al. Fabrication and photostability of rhodamine-6G gold nanoparticle doped polymer optical fiber[J]. Chinese Physics Letters, 30, 118101(2013).

    [20] Sebastian S, Linslal L, Vallabhan G et al. Random lasing with enhanced photostability of silver nanoparticle doped polymer optical fiber laser[J]. Laser Physics Letters, 11, 055108(2014).

    [21] Hu Z J, Liang Y Y, Gao P F et al. Random lasing from dye doped polymer optical fiber containing gold nanoparticles[J]. Journal of Optics, 17, 125403(2015).

    [22] White D J, Stoddart P R. Nanostructured optical fiber with surface-enhanced Raman scattering functionality[J]. Optics Letters, 30, 598-600(2005).

    [23] Guo H Q, Tao S Q. Silver nanoparticles doped silica nanocomposites coated on an optical fiber for ammonia sensing[J]. Sensors and Actuators B: Chemical, 123, 578-582(2007).

    [24] Zheng X L, Guo D W, Shao Y L et al. Photochemical modification of an optical fiber tip with a silver nanoparticle film: a SERS chemical sensor[J]. Langmuir, 24, 4394-4398(2008).

    [25] Ma X D, Huo H B, Wang W H et al. Surface-enhanced Raman scattering sensor on an optical fiber probe fabricated with a femtosecond laser[J]. Sensors, 10, 11064-11071(2010).

    [26] Andrade G F S, Hayashi J G, Rahman M M et al. . Surface-enhanced resonance Raman scattering (SERRS) using Au nanohole arrays on optical fiber tips[J]. Plasmonics, 8, 1113-1121(2013).

    [27] Cao J, Zhao D, Lei X et al. One-pot hydrothermal synthesis of silver nanoplates on optical fiber tip for surface-enhanced Raman scattering[J]. Applied Physics Letters, 104, 201906(2014).

    [28] Milenko K, Fuglerud S S, Kjeldby S B et al. Micro-lensed optical fibers for a surface-enhanced Raman scattering sensing probe[J]. Optics Letters, 43, 6029-6032(2018).

    [29] Kim H M, Uh M, Jeong D H et al. Localized surface plasmon resonance biosensor using nanopatterned gold particles on the surface of an optical fiber[J]. Sensors and Actuators B: Chemical, 280, 183-191(2019).

    [30] Amezcua-Correa A, Yang J, Finlayson C E et al. Surface-enhanced Raman scattering using microstructured optical fiber substrates[J]. Advanced Functional Materials, 17, 2024-2030(2007).

    [31] Yang X H, Wang L L. Silver nanocrystals modified microstructured polymer optical fibres for chemical and optical sensing[J]. Optics Communications, 280, 368-373(2007).

    [32] Peacock A C, Amezcua-Correa A, Yang J X et al. Highly efficient surface enhanced Raman scattering using microstructured optical fibers with enhanced plasmonic interactions[J]. Applied Physics Letters, 92, 141113(2008).

    [33] Lin A X, Liu X M, Watekar P R et al. Ag nanocrystal-incorporated germano-silicate optical fiber with high resonant nonlinearity[J]. Applied Physics Letters, 93, 021901(2008).

    [34] Chattopadhyay R, Bhadra S K. Dispersion tailoring in single mode optical fiber by doping silver nanoparticle[J]. Applied Physics B, 111, 399-406(2013).

    [35] Sjödin N, Fokine M et al. . Fabrication and optical characterization of silica optical fibers containing gold nanoparticles[J]. ACS Applied Materials & Interfaces, 7, 370-375(2015).

    [36] Jana N R, Gearheart L, Murphy C J. Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template[J]. Advanced Materials, 13, 1389-1393(2001).

    [37] Kim F, Song J H, Yang P D. Photochemical synthesis of gold nanorods[J]. Journal of the American Chemical Society, 124, 14316-14317(2002).

    [38] Ye X C, Gao Y Z, Chen J et al. Seeded growth of monodisperse gold nanorods using bromide-free surfactant mixtures[J]. Nano Letters, 13, 2163-2171(2013).

    [39] Chang H H, Murphy C J. Mini gold nanorods with tunable plasmonic peaks beyond 1000 nm[J]. Chemistry of Materials, 30, 1427-1435(2018).

    [40] Skrabalak S E, Chen J Y, Sun Y G et al. Gold nanocages: synthesis, properties, and applications[J]. Accounts of Chemical Research, 41, 1587-1595(2008).

    [41] Kuttner C, Mayer M, Dulle M et al. Seeded growth synthesis of gold nanotriangles: size control, SAXS analysis, and SERS performance[J]. ACS Applied Materials & Interfaces, 10, 11152-11163(2018).

    [42] Xi W J, Haes A J. Elucidation of HEPES affinity to and structure on gold nanostars[J]. Journal of the American Chemical Society, 141, 4034-4042(2019).

    [43] Pohling C, Campbell J L, Larson T A et al. Smart-dust-nanorice for enhancement of endogenous Raman signal, contrast in photoacoustic imaging, and T2-shortening in magnetic resonance imaging[J]. Small, 14, 1703683(2018).

    [44] Singh P. König T A F, Jaiswal A. NIR-active plasmonic gold nanocapsules synthesized using thermally induced seed twinning for surface-enhanced Raman scattering applications[J]. ACS Applied Materials & Interfaces, 10, 39380-39390(2018).

    [45] Liang H Y, Wang W Z, Huang Y Z et al. Controlled synthesis of uniform silver nanospheres[J]. The Journal of Physical Chemistry C, 114, 7427-7431(2010).

    [46] Hu J Q, Chen Q, Xie Z X et al. A simple and effective route for the synthesis of crystalline silver nanorods and nanowires[J]. Advanced Functional Materials, 14, 183-189(2004).

    [47] Huang Z L, Lei X, Liu Y et al. Tapered optical fiber probe assembled with plasmonic nanostructures for surface-enhanced Raman scattering application[J]. ACS Applied Materials & Interfaces, 7, 17247-17254(2015).

    [48] Lepinay S, Staff A, Ianoul A et al. Improved detection limits of protein optical fiber biosensors coated with gold nanoparticles[J]. Biosensors and Bioelectronics, 52, 337-344(2014).

    [49] Yi J, Jao C Y. Kandas I L N, et al. Irreversible adsorption of gold nanospheres on fiber optical tapers and microspheres[J]. Applied Physics Letters, 100, 153107(2012).

    [50] Shao Y L, Xu S P, Zheng X L et al. Optical fiber LSPR biosensor prepared by gold nanoparticle assembly on polyelectrolyte multilayer[J]. Sensors, 10, 3585-3596(2010).

    [51] Yap F L, Thoniyot P, Krishnan S et al. Nanoparticle cluster arrays for high-performance SERS through directed self-assembly on flat substrates and on optical fibers[J]. ACS Nano, 6, 2056-2070(2012).

    [52] Luo J, Yao J, Lu Y G et al. A silver nanoparticle-modified evanescent field optical fiber sensor for methylene blue detection[J]. Sensors, 13, 3986-3997(2013).

    [53] Cheng S F, Chau L K. Colloidal gold-modified optical fiber for chemical and biochemical sensing[J]. Analytical Chemistry, 75, 16-21(2003).

    [54] Huang K T, Lin T J, Hsu M H. Determination of cyclic GMP concentration using a gold nanoparticle-modified optical fiber[J]. Biosensors and Bioelectronics, 26, 11-15(2010).

    [55] Rithesh Raj D, Prasanth S, Sudarsanakumar C. Development of LSPR-based optical fiber dopamine sensor using L-tyrosine-capped silver nanoparticles and its nonlinear optical properties[J]. Plasmonics, 12, 1227-1234(2017).

    [56] Rivero P J, Urrutia A, Goicoechea J et al. Optical fiber humidity sensors based on localized surface plasmon resonance (LSPR) and lossy-mode resonance (LMR) in overlays loaded with silver nanoparticles[J]. Sensors and Actuators B: Chemical, 173, 244-249(2012).

    [57] Muri H I, Hjelme D R. LSPR coupling and distribution of interparticle distances between nanoparticles in hydrogel on optical fiber end face[J]. Sensors, 17, 2723(2017).

    [58] Muri H I, Bano A, Hjelme D R. LSPR and interferometric sensor modalities combined using a double-clad optical fiber[J]. Sensors, 18, 187(2018).

    [59] Urrutia A, Goicoechea J, Rivero P J et al. Optical fiber sensors based on gold nanorods embedded in polymeric thin films[J]. Sensors and Actuators B: Chemical, 255, 2105-2112(2018).

    [60] Smythe E J, Dickey M D, Bao J M et al. Optical antenna arrays on a fiber facet for in situ surface-enhanced Raman scattering detection[J]. Nano Letters, 9, 1132-1138(2009).

    [61] Lin Y B, Zou Y, Mo Y Y et al. E-beam patterned gold nanodot arrays on optical fiber tips for localized surface plasmon resonance biochemical sensing[J]. Sensors, 10, 9397-9406(2010).

    [62] Cennamo N, Donà A, Pallavicini P et al. Sensitive detection of 2, 4, 6-trinitrotoluene by tridimensional monitoring of molecularly imprinted polymer with optical fiber and five-branched gold nanostars[J]. Sensors and Actuators B: Chemical, 208, 291-298(2015).

    [63] Wieduwilt T, Zeisberger M, Thiele M et al. Gold-reinforced silver nanoprisms on optical fiber tapers: a new base for high precision sensing[J]. APL Photonics, 1, 066102(2016).

    [64] Hutter T, Elliott S R, Mahajan S. Optical fibre-tip probes for SERS: numerical study for design considerations[J]. Optics Express, 26, 15539-15550(2018).

    [65] Russell P. Photonic crystal fibers[J]. Science, 299, 358-362(2003).

    [66] Knight J C, Birks T A. Russell P St J, et al. Properties of photonic crystal fiber and the effective index model[J]. Journal of the Optical Society of America A, 15, 748-752(1998).

    [67] Konorov S O, Zheltikov A M, Scalora M. Photonic-crystal fiber as a multifunctional optical sensor and sample collector[J]. Optics Express, 13, 3454-3459(2005).

    [68] Guo J J, Luo Y Q, Yang C X et al. In situ surface-enhanced Raman scattering sensing with soft and flexible polymer optical fiber probes[J]. Optics Letters, 43, 5443-5446(2018).

    [69] Li S T, Wang L, Zhai T R et al. Plasmonic random lasing in polymer fiber[J]. Optics Express, 24, 12748-12754(2016).

    [70] Dhawan A, Muth J F. Plasmon resonances of gold nanoparticles incorporated inside an optical fibre matrix[J]. Nanotechnology, 17, 2504-2511(2006).

    [71] García J A, Monzón-Hernández D, Manríquez J et al. One step method to attach gold nanoparticles onto the surface of an optical fiber used for refractive index sensing[J]. Optical Materials, 51, 208-212(2016).

    [72] Dou X Y, Zhang J, Chen S M et al. Process optimization and Raman spectroscopy enhancement experiment of multimode tapered fiber SERS probe[J]. Acta Optica Sinica, 38, 0530001(2018).

    [73] Lin A X, Liu X M, Watekar P R et al. All-optical switching application of germano-silicate optical fiber incorporated with Ag nanocrystals[J]. Optics Letters, 34, 791-793(2009).

    [74] Halder A, Chattopadhyay R, Majumder S et al. Highly fluorescent silver nanoclusters in alumina-silica composite optical fiber[J]. Applied Physics Letters, 106, 011101(2015).

    [75] Fang Z J, Zheng S P, Peng W C et al. Fabrication and characterization of glass-ceramic fiber-containing Cr 3+ -doped ZnAl2O4 nanocrystals [J]. Journal of the American Ceramic Society, 98, 2772-2775(2015).

    [76] Fang Z J, Zheng S P, Peng W C et al. Ni 2+ doped glass ceramic fiber fabricated by melt-in-tube method and successive heat treatment [J]. Optics Express, 23, 28258-28263(2015).

    [77] Fang Z J, Zheng S P, Peng W C et al. Bismuth-doped multicomponent optical fiber fabricated by melt-in-tube method[J]. Journal of the American Ceramic Society, 99, 856-859(2016).

    [78] Peng W C, Fang Z J, Ma Z J et al. Enhanced upconversion emission in crystallization-controllable glass-ceramic fiber containing Yb 3+-Er 3+codoped CaF2 nanocrystals [J]. Nanotechnology, 27, 405203(2016).

    [79] Fang Z J, Xiao X S, Wang X et al. Glass-ceramic optical fiber containing Ba2TiSi2O8 nanocrystals for frequency conversion of lasers[J]. Scientific Reports, 7, 44456(2017).

    [80] Huang X J, Fang Z J, Kang S L et al. Controllable fabrication of novel all solid-state PbS quantum dot-doped glass fibers with tunable broadband near-infrared emission[J]. Journal of Materials Chemistry C, 5, 7927-7934(2017).

    [81] Li M S, Yang C X. Laser-induced silver nanoparticles deposited on optical fiber core for surface-enhanced Raman scattering[J]. Chinese Physics Letters, 27, 044202(2010).

    [82] Liu T, Xiao X S, Yang C X. Surfactantless photochemical deposition of gold nanoparticles on an optical fiber core for surface-enhanced Raman scattering[J]. Langmuir, 27, 4623-4626(2011).

    [83] Fan Q F, Liu Y, Cao J et al. Fabrications for tapered fiber SERS probes with laser-induced chemical deposition method[J]. Chinese Journal of Lasers, 41, 0310001(2014).

    [84] Chen I C, Lin S S, Lin T J et al. Detection of hydrofluoric acid by a SiO2 sol-gel coating fiber-optic probe based on reflection-based localized surface plasmon resonance[J]. Sensors, 11, 1907-1923(2011).

    [85] Vasconcelos H, Jorge P A S et al. . Plasmonic optical fiber sensor based on double step growth of gold nano-islands[J]. Sensors, 18, 1267(2018).

    [86] Ricard D, Roussignol P, Flytzanis C. Surface-mediated enhancement of optical phase conjugation in metal colloids[J]. Optics Letters, 10, 511-513(1985).

    [87] Hache F, Ricard D, Flytzanis C. Optical nonlinearities of small metal particles: surface-mediated resonance and quantum size effects[J]. Journal of the Optical Society of America B, 3, 1647-1655(1986).

    [88] Ju S, Nguyen V L, Watekar P R et al. Fabrication and optical characteristics of a novel optical fiber doped with the Au nanoparticles[J]. Journal of Nanoscience and Nanotechnology, 6, 3555-3558(2006).

    [89] Bigot L, el Hamzaoui H, le Rouge A et al. . Linear and nonlinear optical properties of gold nanoparticle-doped photonic crystal fiber[J]. Optics Express, 19, 19061-19066(2011).

    [90] Halder A, Paul M C, Das S et al. Experimental study of metal nano-particle doped optical fiber and its unique spectral property. [C]∥International Conference on Fibre Optics and Photonics, December 9-12, 2012, Chennai, India. Washington, D C: OSA, M3B, 4(2012).

    [91] Sugimoto N, Kanbara H, Fujiwara S et al. Third-order optical nonlinearities and their ultrafast response in Bi2O3-B2O3-SiO2 glasses[J]. Journal of the Optical Society of America B, 16, 1904-1908(1999).

    [92] Singh S P, Karmakar B. Single-step synthesis and surface plasmons of bismuth-coated spherical to hexagonal silver nanoparticles in dichroic Ag∶bismuth glass nanocomposites[J]. Plasmonics, 6, 457-467(2011).

    [93] Chen F F, Cheng J W, Dai S X et al. Z-scan and optical Kerr shutter studies of silver nanoparticles embedded bismuthate glasses[J]. Journal of Non-Crystalline Solids, 377, 151-154(2013).

    [94] Chen F F, Cheng J W, Dai S X et al. Third-order optical nonlinearity at 800 and 1300 nm in bismuthate glasses doped with silver nanoparticles[J]. Optics Express, 22, 13438-13447(2014).

    [95] Chen F F, Cheng J W, Dai S X et al. Formation and third-order optical nonlinearities of silver nano-crystals embedded bismuthate glasses[J]. Materials Research Bulletin, 48, 4667-4672(2013).

    [96] Tu M H, Sun T. Grattan K T V. Optimization of gold-nanoparticle-based optical fibre surface plasmon resonance (SPR)-based sensors[J]. Sensors and Actuators B: Chemical, 164, 43-53(2012).

    [97] Ortega-Mendoza J G, Padilla-Vivanco A, Toxqui-Quitl C et al. . Optical fiber sensor based on localized surface plasmon resonance using silver nanoparticles photodeposited on the optical fiber end[J]. Sensors, 14, 18701-18710(2014).

    [98] Tu M H, Sun T. Grattan K T V. LSPR optical fibre sensors based on hollow gold nanostructures[J]. Sensors and Actuators B: Chemical, 191, 37-44(2014).

    [99] Gowri A. Sai V V R. Development of LSPR based U-bent plastic optical fiber sensors[J]. Sensors and Actuators B: Chemical, 230, 536-543(2016).

    [100] Ohodnicki P R. Jr, Buric M P, Brown T D, et al. Plasmonic nanocomposite thin film enabled fiber optic sensors for simultaneous gas and temperature sensing at extreme temperatures[J]. Nanoscale, 5, 9030-9039(2013).

    [101] Luan N N, Wang R, Lü W H et al. Surface plasmon resonance temperature sensor based on photonic crystal fibers randomly filled with silver nanowires[J]. Sensors, 14, 16035-16045(2014).

    [102] Wang P, Zhang L, Xia Y N et al. Polymer nanofibers embedded with aligned gold nanorods: a new platform for plasmonic studies and optical sensing[J]. Nano Letters, 12, 3145-3150(2012).

    [103] Mullen K I, Carron K T. Surface-enhanced Raman spectroscopy with abrasively modified fiber optic probes[J]. Analytical Chemistry, 63, 2196-2199(1991).

    [104] Su L, Lee T H, Elliott S R. Evanescent-wave excitation of surface-enhanced Raman scattering substrates by an optical-fiber taper[J]. Optics Letters, 34, 2685-2687(2009).

    [105] Li M, Li K W, Dai F et al. Highly sensitive optical nanofiber sensor based on gold nanorod amplification[J]. Acta Optica Sinica, 35, 1206001(2015).

    [106] Yang X, Gu C, Qian F et al. Highly sensitive detection of proteins and bacteria in aqueous solution using surface-enhanced Raman scattering and optical fibers[J]. Analytical Chemistry, 83, 5888-5894(2011).

    [107] Danny C G, Subrahmanyam A. Sai V V R. Development of plasmonic U-bent plastic optical fiber probes for surface enhanced Raman scattering based biosensing[J]. Journal of Raman Spectroscopy, 49, 1607-1616(2018).

    [108] Wang C, Zeng L H, Li Z et al. Review of optical fibre probes for enhanced Raman sensing[J]. Journal of Raman Spectroscopy, 48, 1040-1055(2017).

    [109] Hu D J J, Ho H P. Recent advances in plasmonic photonic crystal fibers: design, fabrication and applications[J]. Advances in Optics and Photonics, 9, 257-314(2017).

    [110] Stoddart P R, White D J. Optical fibre SERS sensors[J]. Analytical and Bioanalytical Chemistry, 394, 1761-1774(2009).

    [111] Wang A X, Kong X M. Review of recent progress of plasmonic materials and nano-structures for surface-enhanced Raman scattering[J]. Materials, 8, 3024-3052(2015).

    [112] Kang H, Buchman J T, Rodriguez R S et al. Stabilization of silver and gold nanoparticles: preservation and improvement of plasmonic functionalities[J]. Chemical Reviews, 119, 664-699(2019).

    Zhijun Ma, Bofan Jiang, Qi Xu, Jianrong Qiu. Fabrication and Applications of Metal Nanocrystals Hybridized Optical Fibers[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170610
    Download Citation