• Laser & Optoelectronics Progress
  • Vol. 56, Issue 17, 170610 (2019)
Zhijun Ma1、*, Bofan Jiang1, Qi Xu1, and Jianrong Qiu1、2、**
Author Affiliations
  • 1 State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510640, China
  • 2 State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
  • show less
    DOI: 10.3788/LOP56.170610 Cite this Article Set citation alerts
    Zhijun Ma, Bofan Jiang, Qi Xu, Jianrong Qiu. Fabrication and Applications of Metal Nanocrystals Hybridized Optical Fibers[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170610 Copy Citation Text show less

    Abstract

    Metal nanocrystals hybridized optical fibers (MNCs-OFs) combine the unique localized surface plasmon resonance (LSPR) property afforded by metal nanocrystals and the advantages of small size, simple structure, stable performance, and high resilience to disturbance of optical fibers. On the one hand, high optical nonlinearity, metal enhanced fluorescence,and surface enhanced Raman scattering, which are caused by LSPR of metal nanocrystals, can impart optical fiber with new functionalities and better performance. On the other hand, evanescent wave transmitting property of optical fiber can tremendously enhance the excitation efficiency of LSPR of metal nanocrystals. Therefore, MNCs-OFs are very useful in many applications such as optical tuning, fiber laser, physical/biochemical sensing and detection, which have drawn extensive research interests. Here, we make a brief review to the LSPR mechanism of metal nanocrystals and the fabrication and applications of MNCs-OFs,and provide a prospect to the future development of this type of optical fibers.
    Zhijun Ma, Bofan Jiang, Qi Xu, Jianrong Qiu. Fabrication and Applications of Metal Nanocrystals Hybridized Optical Fibers[J]. Laser & Optoelectronics Progress, 2019, 56(17): 170610
    Download Citation