• Photonics Research
  • Vol. 8, Issue 2, 135 (2020)
Siwei Long1, Shaopeng Lin2, Decai Ma2, Yunzhong Zhu2, Huashan Li1、3、*, and Biao Wang1、2、4、*
Author Affiliations
  • 1School of Physics, Sun Yat-sen University, Guangzhou 510275, China
  • 2Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
  • 3e-mail: lihsh25@mail.sysu.edu.cn
  • 4e-mail: wangbiao@mail.sysu.edu.cn
  • show less
    DOI: 10.1364/PRJ.8.000135 Cite this Article Set citation alerts
    Siwei Long, Shaopeng Lin, Decai Ma, Yunzhong Zhu, Huashan Li, Biao Wang. Thermometry strategy developed based on fluorescence contrast driven by varying excitations in codoped LiNbO3[J]. Photonics Research, 2020, 8(2): 135 Copy Citation Text show less
    References

    [1] E. Hertle, L. Chepyga, M. Batentschuk, L. Zigan. Influence of codoping on the luminescence properties of YAG:Dy for high temperature phosphor thermometry. J. Lumin., 182, 200-207(2017).

    [2] F. F. Hu, J. K. Cao, X. T. Wei, X. Y. Li, J. J. Cai, H. Guo, Y. H. Chen, C. K. Duan, M. Yin. Luminescence properties of Er3+-doped transparent NaYb2F7 glass-ceramics for optical thermometry and spectral conversion. J. Mater. Chem. C, 4, 9976-9985(2016).

    [3] S. S. Zhou, C. K. Duan, M. Yin, X. L. Liu, S. Han, S. B. Zhang, X. M. Li. Optical thermometry based on cooperation of temperature-induced shift of charge transfer band edge and thermal coupling. Opt. Express, 26, 27339-27345(2018).

    [4] D. Y. Wang, P. P. Zhang, Q. Ma, J. C. Zhang, Y. H. Wang. Synthesis, optical properties and application of Y7O6F9:Er3+ for sensing the chip temperature of a light emitting diode. J. Mater. Chem. C, 6, 13352-13358(2018).

    [5] S. A. Wade, S. F. Collins, G. W. Baxter. Fluorescence intensity ratio technique for optical fiber point temperature sensing. J. Appl. Phys., 94, 4743-4756(2003).

    [6] X. N. Tian, X. T. Wei, Y. H. Chen, C. K. Duan, M. Yin. Temperature sensor based on ladder-level assisted thermal coupling and thermal-enhanced luminescence in NaYF4:Nd3+. Opt. Express, 22, 30333-30345(2014).

    [7] S. S. Zhou, X. T. Wei, X. Y. Li, Y. H. Chen, C. K. Duan, M. Yin. Temperature sensing based on the cooperation of Eu3+ and Nd3+ in Y2O3 nanoparticles. Sens. Actuators B Chem., 246, 352-357(2017).

    [8] F. Huang, D. Q. Chen. Synthesis of Mn2+: Zn2SiO4-Eu3+:Gd2O3 nanocomposites for highly sensitive optical thermometry through the synergistic luminescence from lanthanide-transition metal ions. J. Mater. Chem. C, 5, 5176-5182(2017).

    [9] R. Shi, L. T. Lin, P. Dorenbos, H. B. Liang. Development of a potential optical thermometric material through photoluminescence of Pr3+ in La2MgTiO6. J. Mater. Chem. C, 5, 10737-10745(2017).

    [10] Y. Gao, F. Huang, H. Lin, J. C. Zhou, J. Xu, Y. S. Wang. A novel optical thermometry strategy based on diverse thermal response from two intervalence charge transfer states. Adv. Funct. Mater., 26, 3139-3145(2016).

    [11] L. L. Xing, Y. L. Xu, R. Wang, W. Xu, Z. G. Zhang. Highly sensitive optical thermometry based on upconversion emissions in Tm3+/Yb3+ codoped LiNbO3 single crystal. Opt. Lett., 39, 454-457(2014).

    [12] Z. Liang, F. Qin, Y. D. Zheng, Z. G. Zhang, W. W. Cao. Noncontact thermometry based on downconversion luminescence from Eu3+ doped LiNbO3 single crystal. Sens. Actuators A Phys., 238, 215-219(2016).

    [13] C. D. S. Brites, K. Fiaczyk, J. Ramalho, M. Sojka, L. D. Carlos, E. Zych. Widening the temperature range of luminescent thermometers through the intra- and interconfigurational transitions of Pr3+. Adv. Opt. Mater., 6, 1701318(2018).

    [14] X. Y. Tian, S. X. Lian, C. Y. Ji, Z. Huang, J. Wen, Z. J. Chen, H. X. Peng, S. M. Wang, J. Li, J. L. Hu, Y. X. Peng. Enhanced photoluminescence and ultrahigh temperature sensitivity from NaF flux assisted CaTiO3:Pr3+ red emitting phosphor. J. Alloy. Compd., 784, 628-640(2019).

    [15] P. Boutinaud, E. Pinel, M. Oubaha, R. Mahiou, E. Cavalli, M. Bettinelli. Making red emitting phosphors with Pr3+. Opt. Mater., 28, 9-13(2006).

    [16] R. S. Lei, X. Y. Luo, Z. Y. Yuan, H. P. Wang, F. F. Huang, D. G. Deng, S. Q. Xu. Ultrahigh-sensitive optical temperature sensing in Pr3+: Y2Ti2O7 based on diverse thermal response from trap emission and Pr3+ red luminescence. J. Lumin., 205, 440-445(2019).

    [17] W. Gryk, B. Kuklinski, M. Grinberg, M. Malinowski. High pressure spectroscopy of Pr3+ in LiNbO3. J. Alloy. Compd., 380, 230-234(2004).

    [18] S. W. Long, M. M. Yang, D. C. Ma, Y. Z. Zhu, S. P. Lin, B. Wang. Enhanced red emissions and higher quenching temperature based on the intervalence charge transfer in Pr3+ doped LiNbO3 with Mg2+ incorporation. Opt. Mater. Express, 9, 1062-1071(2019).

    [19] C. Koepke, K. Wisniewski, D. Dyl, M. Grinberg, M. Malinowski. Evidence for existence of the trapped exciton states in Pr3+-doped LiNbO3 crystal. Opt. Mater., 28, 137-142(2006).

    [20] S. Hu, C. H. Lu, X. X. Liu, Z. Z. Xu. Optical temperature sensing based on the luminescence from YAG:Pr transparent ceramics. Opt. Mater., 60, 394-397(2016).

    [21] H. Suo, F. F. Hu, X. Q. Zhao, Z. Y. Zhang, T. Li, C. K. Duan, M. Yin, C. F. Guo. All-in-one thermometer-heater up-converting platform YF3:Yb3+, Tm3+ operating in the first biological window. J. Mater. Chem. C, 5, 1501-1507(2017).

    [22] C. W. Struck, W. H. Fonger. Thermal quenching of Tb+3, Tm+3, Pr+3, and Dy+3 4fn emitting states in La2O2S. J. Appl. Phys., 42, 4515-4516(1971).

    [23] P. Boutinaud, E. Cavalli, M. Bettinelli. Emission quenching induced by intervalence charge transfer in Pr3+- or Tb3+-doped YNbO4 and CaNb2O6. J. Phys. Condens. Matter, 19, 386230(2007).

    [24] S. Zhang, H. B. Liang, C. M. Liu. Increased 1D2 red emission of Pr3+ in NaGdTiO4:Pr3+ due to temperature-assisted host sensitization and its color variation. J. Phys. Chem. C, 117, 2216-2221(2013).

    [25] O. A. Savchuk, J. J. Carvajal, C. D. S. Brites, L. D. Carlos, M. Aguilo, F. Diaz. Upconversion thermometry: a new tool to measure the thermal resistance of nanoparticles. Nanoscale, 10, 6602-6610(2018).

    [26] P. Cortelletti, A. Skripka, C. Facciotti, M. Pedroni, G. Caputo, N. Pinna, M. Quintanilla, A. Benayas, F. Vetrone, A. Speghini. Tuning the sensitivity of lanthanide-activated NIR nanothermometers in the biological windows. Nanoscale, 10, 2568-2576(2018).

    [27] S. Balabhadra, M. L. Debasu, C. D. S. Brites, L. A. O. Nunes, O. L. Malta, J. Rocha, M. Bettinelli, L. D. Carlos. Boosting the sensitivity of Nd3+-based luminescent nanothermometers. Nanoscale, 7, 17261-17267(2015).

    Siwei Long, Shaopeng Lin, Decai Ma, Yunzhong Zhu, Huashan Li, Biao Wang. Thermometry strategy developed based on fluorescence contrast driven by varying excitations in codoped LiNbO3[J]. Photonics Research, 2020, 8(2): 135
    Download Citation