• Photonics Research
  • Vol. 5, Issue 6, 654 (2017)
Mahmoud H. Elshorbagy1、2, Alexander Cuadrado1, and Javier Alda1、*
Author Affiliations
  • 1Optics Department, University Complutense of Madrid, Faculty of Optics and Optometry, Av. Arcos de Jalon, 118, 28037 Madrid, Spain
  • 2Physics Department, Faculty of Science, Minia University, University Campus, 61519 El-Minya, Egypt
  • show less
    DOI: 10.1364/PRJ.5.000654 Cite this Article Set citation alerts
    Mahmoud H. Elshorbagy, Alexander Cuadrado, Javier Alda. High-sensitivity integrated devices based on surface plasmon resonance for sensing applications[J]. Photonics Research, 2017, 5(6): 654 Copy Citation Text show less
    References

    [1] J. Homola. Present and future of surface plasmon resonance biosensors. Anal. Bioanal. Chem., 377, 528-539(2003).

    [2] G. Wang, H. Arwin, R. Jansson. An optical gas sensor based on ellipsometric readout. IEEE Sens. J., 3, 739-743(2003).

    [3] R. Heideman, R. Kooyman, J. Greve. Performance of a highly sensitive optical waveguide Mach–Zehnder interferometer immunosensor. Sens. Actuators B, 10, 209-217(1993).

    [4] C. A. Rowe-Taitt, J. W. Hazzard, K. E. Hoffman, J. J. Cras, J. P. Golden, F. S. Ligler. Simultaneous detection of six biohazardous agents using a planar waveguide array biosensor. Biosens. Bioelectron., 15, 579-589(2000).

    [5] D. Clerc, W. Lukosz. Integrated optical output grating coupler as biochemical sensor. Sens. Actuators B, 19, 581-586(1994).

    [6] B. Meshginqalam, M. T. Ahmadi, R. Ismail, A. Sabatyan. Graphene/graphene oxide-based ultrasensitive surface plasmon resonance biosensor. Plasmonics(2016).

    [7] A. Verma, A. Prakash, R. Tripathi. Sensitivity enhancement of surface plasmon resonance biosensor using graphene and air gap. Opt. Commun., 357, 106-112(2015).

    [8] Q. Ouyang, S. Zeng, L. Jiang, L. Hong, G. Xu, X.-Q. Dinh, J. Qian, S. He, J. Qu, P. Coquet, K.-T. Yong. Sensitivity enhancement of transition metal dichalcogenides/silicon nanostructure-based surface plasmon resonance biosensor. Sci. Rep., 6, 28190(2016).

    [9] Z. Lin, L. Jiang, L. Wu, J. Guo, X. Dai, Y. Xiang, D. Fan. Tuning and sensitivity enhancement of surface plasmon resonance biosensor with graphene covered Au–MoS2–Au films. IEEE Photon. J., 8, 1-8(2016).

    [10] W.-C. Law, K.-T. Yong, A. Baev, P. N. Prasad. Sensitivity improved surface plasmon resonance biosensor for cancer biomarker detection based on plasmonic enhancement. ACS Nano, 5, 4858-4864(2011).

    [11] J. S. Mitchell, Y. Wu, C. J. Cook, L. Main. Sensitivity enhancement of surface plasmon resonance biosensing of small molecules. Anal. Biochem., 343, 125-135(2005).

    [12] K. M. Byun, D. Kim, S. J. Kim. Investigation of the sensitivity enhancement of nanoparticle-based surface plasmon resonance biosensors using rigorous coupled wave analysis. Proc. SPIE, 5703, 61-70(2005).

    [13] T. Springer, M. L. Ermini, B. Spackova, J. Jablonku, J. Homola. Enhancing sensitivity of surface plasmon resonance biosensors by functionalized gold nanoparticles: size matters. Anal. Chem., 86, 10350-10356(2014).

    [14] K. M. Byun, M. L. Shuler, S. J. Kim, S. J. Yoon, D. Kim. Sensitivity enhancement of surface plasmon resonance imaging using periodic metallic nanowires. J. Lightwave Technol., 26, 1472-1478(2008).

    [15] Y. Wang, J. Dostalek, W. Knoll. Magnetic nanoparticle-enhanced biosensor based on grating-coupled surface plasmon resonance. Anal. Chem., 83, 6202-6207(2011).

    [16] X. Sun, X. Shu, C. Chen. Grating surface plasmon resonance sensor: angular sensitivity, metal oxidization effect of Al-based device in optimal structure. Appl. Opt., 54, 1548-1554(2015).

    [17] K. M. Byun, S. J. Kim, D. Kim. Grating-coupled transmission-type surface plasmon resonance sensors based on dielectric and metallic gratings. Appl. Opt., 46, 5703-5708(2007).

    [18] D.-W. Huang, Y.-F. Ma, M.-J. Sung, C.-P. Huang. Approach the angular sensitivity limit in surface plasmon resonance sensors with low index prism and large resonant angle. Opt. Eng., 49, 054403(2010).

    [19] A. Dhawan, M. Canva, T. Vo-Dinh. Narrow groove plasmonic nano-gratings for surface plasmon resonance sensing. Opt. Express, 19, 787-813(2011).

    [20] A. Polyakov, K. Thompson, S. Dhuey, D. Olynick, S. Cabrini, P. Schuck, H. Padmore. Plasmon resonance tuning in metallic nanocavities. Sci. Rep., 2, 933(2012).

    [21] T.-W. Lee, S. K. Gray. Remote grating-assisted excitation of narrow-band surface plasmons. Opt. Express, 18, 23857-23864(2010).

    [22] M. Sun, T. Sun, Y. Liu, L. Zhu, F. Liu, Y. Huang, C. Chang-Hasnain. Integrated plasmonic refractive index sensor based on grating/metal film resonant structure. Proc. SPIE, 9757, 97570Q(2016).

    [23] V. V. Temnov, K. Nelson, G. Armelles, A. Cebollada, T. Thomay, A. Leitensorfer, R. Bratschitsch. Femtosecond surface plasmon interferometry. Opt. Express, 17, 8423-8432(2009).

    [24] F. Cheng, X. Yand, J. Gao. Enhancing intensity and refractive index sensing capability with infrared plasmonic perfect absorbers. Opt. Lett., 39, 3185-3188(2014).

    [25] N. Liu, M. Mesch, T. Weiss, M. Henstchel, H. Giessen. Infrared perfect absorber and its application as plasmonic sensor. Nano Lett., 10, 2342-2348(2010).

    [26] S. Unser, I. Bruzas, J. He, L. Sagle. Localized surface plasmon resonance biosensing: current challenges and approaches. Sensors, 15, 15684-15716(2015).

    [27] M. Piliarik, J. Homola. Surface plasmon resonance (SPR) sensors: approaching their limits?. Opt. Express, 17, 16505-16517(2009).

    [28] X. Ding, Y. Yan, S. Li, Y. Zhang, W. Cheng, Q. Cheng, S. Ding. Surface plasmon resonance biosensor for highly sensitive detection of microrna based on DNA super-sandwich assemblies and streptavidin signal amplification. Anal. Chim. Acta, 874, 59-65(2015).

    [29] J. S. Mitchell, P. A. Serra, Y. Wu. Surface plasmon resonance biosensors for highly sensitive detection of small biomolecules. Biosensors, 151-168(2010).

    [30] N. K. Sharma. Performances of different metals in optical fiber-based surface plasmon resonance sensor. Pramana J. Phys., 78, 417-427(2012).

    [31] J. Alda, G. Boreman. Infrared Antennas and Resonant Structures(2017).

    [32] A. Cuadrado, J. Toudert, R. Serna. Polaritonic-to-plasmonic transition in optically resonant bismuth nanospheres for high-contrast switchable ultraviolet meta-filters. IEEE Photon. J., 8, 1-11(2016).

    [33] I. Malitson. Interspecimen comparison of the refractive index of fused silica. J. Opt. Soc. Am., 55, 1205-1209(1965).

    [34] P. B. Johnson, R.-W. Christy. Optical constants of the noble metals. Phys. Rev. B, 6, 4370-4379(1972).

    [35] M. J. Dodge. Refractive properties of magnesium fluoride. Appl. Opt., 23, 1980-1985(1984).

    [36] H. Krüger, E. Kemnitz, A. Hertwig, U. Beck. Transparent MgF2-films by sol-gel coating: synthesis and optical properties. Thin Solid Films, 516, 4175-4177(2008).

    [37] S. Fujihara, M. Tada, T. Kimura. Preparation and characterization of MgF2 thin film by a trifluoroacetic acid method. Thin Solid Films, 304, 252-255(1997).

    [38] L. J. Sherry, S.-H. Chang, G. C. Schatz, R. P. Van Duyne, B. J. Wiley, Y. Xia. Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett., 5, 2034-2038(2005).

    [39] M. H. Elshorbagy, J. Alda. Funneling and guiding effects in ultrathin aSi-H solar cells using one-dimensional dielectric subwavelength gratings. J. Photon. Energy, 7, 017002(2017).

    [40] S. Maier. Plasmonics, Fundamentals and Applications(2007).

    [41] F. Pardo, P. Bouchon, R. Haïdar, J.-L. Pelouard. Light funneling mechanism explained by magnetoelectric interference. Phys. Rev. Lett., 107, 093902(2011).

    [42] . Optical glass data sheets 2015-07-22.

    [43] G. Beadie, M. Brindza, R. A. Flynn, A. Rosenberg, J. S. Shirk. Refractive index measurements of poly (methyl methacrylate)(PMMA) from 0.4 to 1.6  μm. Appl. Opt., 54, F139-F143(2015).

    [44] R. Treharne, A. Seymour-Pierce, K. Durose, K. Hutchings, S. Roncallo, D. Lane. Optical design and fabrication of fully sputtered CdTe/CdS solar cells. J. Phys., 286, 012038(2011).

    [45] B. M. Špačková, P. Wrobel, J. Homola. Optical biosensors based on plasmonic nanostructures: a review. Proc. IEEE, 104, 2380-2408(2016).

    [46] M. A. Otte, B. Sepulveda, W. Ni, J. P. Juste, L. M. Liz-Marzán, L. M. Lechuga. Identification of the optimal spectral region for plasmonic and nanoplasmonic sensing. ACS Nano, 4, 349-357(2009).

    [47] W. Su, G. Zheng, X. Li. Design of a highly sensitive surface plasmon resonance sensor using aluminum-based diffraction grating. Opt. Commun., 285, 4603-4607(2012).

    [48] E. Martinsson, M. M. Shahjamali, K. Enander, F. Boey, C. Xue, D. Aili, B. Liedberg. Local refractive index sensing based on edge gold-coated silver nanoprisms. J. Phys. Chem. C, 117, 23148-23154(2013).

    [49] Y.-F. C. Chau, J.-Y. Syu, C.-T. C. Chao, H.-P. Chiang, C. M. Lim. Design of crossing metallic metasurface arrays based on high sensitivity of gap enhancement and transmittance shift for plasmonic sensing applications. J. Phys. D, 50, 045105(2016).

    [50] J. Maurya, Y. Prajapati. A comparative study of different metal and prism in the surface plasmon resonance biosensor having MoS2–graphene. Opt. Quantum Electron., 48, 1-12(2016).

    [51] A. Paliwal, M. Tomar, V. Gupta. Table top surface plasmon resonance measurement system for efficient urea biosensing using ZnO thin film matrix. J. Biomed. Opt., 21, 087006(2016).

    [52] L. Wu, J. Guo, X. Dai, Y. Xiang, D. Fan. Sensitivity enhanced by MoS2–graphene hybrid structure in guided-wave surface plasmon resonance biosensor. Plasmonics(2017).

    CLP Journals

    [1] Lixia Li, Xueyang Zong, Yufang Liu. All-metallic metasurfaces towards high-performance magneto-plasmonic sensing devices[J]. Photonics Research, 2020, 8(11): 1742

    Mahmoud H. Elshorbagy, Alexander Cuadrado, Javier Alda. High-sensitivity integrated devices based on surface plasmon resonance for sensing applications[J]. Photonics Research, 2017, 5(6): 654
    Download Citation