• Matter and Radiation at Extremes
  • Vol. 5, Issue 6, 064403 (2020)
Dongdong Kang1, Kai Luo2, Keith Runge3, and S. B. Trickey4
Author Affiliations
  • 1Department of Physics, National University of Defense Technology, Changsha, Hunan 410073, People’s Republic of China
  • 2Earth and Planets Laboratory, Carnegie Institution of Washington, 5251 Broad Branch Rd. NW, Washington, DC 20015, USA
  • 3Department of Materials Science and Engineering, University of Arizona, Tucson, Arizona 85721, USA
  • 4Quantum Theory Project, Department of Physics and Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA
  • show less
    DOI: 10.1063/5.0025164 Cite this Article
    Dongdong Kang, Kai Luo, Keith Runge, S. B. Trickey. Two-temperature warm dense hydrogen as a test of quantum protons driven by orbital-free density functional theory electronic forces[J]. Matter and Radiation at Extremes, 2020, 5(6): 064403 Copy Citation Text show less
    References

    [1] W. J. Nellis, A. C. Mitchell, S. T. Weir. Metallization of fluid molecular hydrogen at 140 GPa (1.4 Mbar). Phys. Rev. Lett., 76, 1860(1996).

    [2] P. M. Celliers, G. W. Collins, L. B. Da Silva et al. Shock-induced transformation of liquid deuterium into a metallic fluid. Phys. Rev. Lett., 84, 5564(2000).

    [3] P. Ney, F. J. Wessel, H. U. Rahman et al. Shock waves in a Z-pinch and the formation of high energy density plasma. Phys. Plasmas, 19, 122701(2012).

    [4] M. D. Knudson, M. P. Desjarlais, A. Becker et al. Direct observation of an abrupt insulator-to-metal transition in dense liquid deuterium. Science, 348, 1455(2015).

    [5] M. P. Desjarlais, M. D. Knudson. High-precision shock wave measurements of deuterium: Evaluation of exchange-correlation functionals at the molecular-to-atomic transition. Phys. Rev. Lett., 118, 035501(2017).

    [6] S. Brygoo, P. Loubeyre, J. Eggert et al. Extended data set for the equation of state of warm dense hydrogen isotopes. Phys. Rev. B, 86, 144115(2012).

    [7] D. Swift, T. Döppner, A. L. Kritcher et al. Probing matter at Gbar pressures at the NIF. High Energy Density Phys., 10, 27(2014).

    [8] R. Nora, W. Theobald, R. Betti et al. Gigabar spherical shock generation on the OMEGA laser. Phys. Rev. Lett., 114, 045001(2015).

    [9] P. Sperling, H. J. Lee, E. J. Gamboa et al. Free-electron x-ray laser measurements of collisional-damped plasmons in isochorically heated warm dense matter. Phys. Rev. Lett., 115, 115001(2015).

    [10] M. S. Murillo, M. W. C. Dharma-wardana. Temperature relaxation in hot dense hydrogen. Phys. Rev. Lett., 100, 205005(2008).

    [11] J. Dai, D. Kang, Q. Ma et al. Molecular dynamics simulation of electroneion temperature relaxation in dense hydrogen: A scheme of truncated Coulomb potential. High Energy Density Phys., 13, 34(2014).

    [12] Q. Ma, J. Dai, D. Kang et al. Extremely low electron-ion temperature relaxation rates in warm dense hydrogen: Interplay between quantum electrons and coupled ions. Phys. Rev. Lett., 122, 015001(2019).

    [13] J. Dai, Q. Zeng. Structural transition dynamics of the formation of warm dense gold: From an atomic scale view. Sci. China-Phys. Mech. Astron., 63, 263011(2020).

    [14] B. L. Kapeliovich, T. L. Perel’man, S. I. Anisimov. Electron emission from metal sufraces exposed to ultrashort laser pulses. Sov. Phys. JETP, 39, 375(1974).

    [15] J. Hohlfeld, S.-S. Wellershoff, J. Güdde et al. Electron and lattice dynamics following optical excitation of metals. Chem. Phys., 251, 237(2000).

    [16] M. S. Murillo. Using Fermi statistics to create strongly coupled ion plasmas in atom traps. Phys. Rev. Lett., 87, 115003(2001).

    [17] S. D. Bergeson, M. Lyon, G. Hart et al. Stronly-coupled plasmas formed from laser-heated solids. Sci. Rep., 5, 15693(2015).

    [18] G. Robert, P. Arnault, J. Clérouin et al. Evidence for out-of-equilibrium states in warm dense matter probed by x-ray Thomson scattering. Phys. Rev. E, 91, 011101(R)(2015).

    [19] R. N. Barnett, U. Landman. Born-Oppenheimer molecular-dynamics simulations of finite systems: Structure and dynamics of (H2O)2. Phys. Rev. B, 48, 2081(1993).

    [20] J. Grotendorst, D. Marx, J. Hutter. Ab initio molecular dynamics: Theory and implementation. Modern Methods and Algorithms of Quantum Chemistry, 301ff(2000).

    [21] J. S. Tse. Ab initio molecular dynamics with density functional theory. Annu. Rev. Phys. Chem., 53, 249(2002).

    [22] J. Hutter, D. Marx. Ab Initio Molecular Dynamics: Basic Theory and Advanced Methods(2009).

    [23] D. A. Chapman, N. J. Hartley, P. Belancourt et al. Electron-ion temperature equilibration in warm dense tantalum. High Energy Density Phys., 14, 1(2015).

    [24] P. Sterne, A. Ng, S. Hansen et al. Dc conductivity of two-temperature warm dense gold. Phys. Rev. E, 94, 033213(2016).

    [25] A. Fernandez-Pañella, S. Hamel, T. Ogitsu et al. Ab initio modeling of nonequilibrium electron-ion dynamics of iron in the warm dense matter regime. Phys. Rev. B, 97, 214203(2018).

    [26] L. Harbour, M. W. C. Dharma-wardana, G. D. Förster et al. Ion-ion dynamic structure factor, acoustic modes, and equation of state of two-temperature warm dense aluminum. Phys. Rev. E, 97, 043210(2018).

    [27] Zh. A. Moldabekov, T. Dornheim, S. Groth et al. Structural characteristics of strongly coupled ions in a dense quantum plasma. Phys. Rev. E, 98, 023207(2018).

    [28] B. Holst, N. Nettelmann, A. Kietzmann et al. Ab initio equation of state data for hydrogen, helium, and water and the internal structure of Jupiter. Astrophys. J., 683, 1217-1228(2008).

    [29] P. Amendt, R. L. Berger, J. D. Lindl et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility. Phys. Plasmas, 11, 339(2004).

    [30] D. Kang, Q. Zeng, Y. Hou et al. Unified first-principles equations of state of deuterium-tritium mixtures in the global inertial confinement fusion region. Matter Radiat. Extremes, 5, 055401(2020).

    [31] M. Harmand, P. Sperling, U. Zastrau et al. Resolving ultrafast heating of dense cryogenic hydrogen. Phys. Rev. Lett., 112, 105002(2014).

    [32] P. Sperling, U. Zastrau, A. Becker et al. Equilibration dynamics and conductivity of warm dense hydrogen. Phys. Rev. E, 90, 013104(2014).

    [33] U. Zastrau, P. Sperling, C. Fortmann-Grote et al. Ultrafast electron kinetics in short pulse laser-driven dense hydrogen. J. Phys. B: At., Mol. Opt. Phys., 48, 224004(2015).

    [34] N. D. Mermin. Thermal properties of the inhomogeneous electron gas. Phys. Rev., 137, A1441(1965).

    [35] D. M. Ceperley. Path integrals in the theory of condensed helium. Rev. Mod. Phys., 67, 279(1995).

    [36] R. J. Husband, I. F. Silvera, M. Zaghoo. Striking isotope effect on the metallization phase lines of liquid hydrogen and deuterium. Phys. Rev. B, 98, 104102(2018).

    [37] S. Biermann, D. Marx, D. Hohl. Quantum effects in solid hydrogen at ultra-high pressure. Solid State Commun., 108, 337(1998).

    [38] T. Ogitsu, S. Tsuneyuki, H. Kitamura et al. Quantum distribution of protons in solid molecular hydrogen at megabar pressures. Nature, 404, 259(2000).

    [39] F. Bottin, G. Geneste, M. Torrent et al. Strong isotope effect in phase II of dense solid hydrogen and deuterium. Phys. Rev. Lett., 109, 155303(2012).

    [40] K. Kinugawa, J. Dawidowski, F. J. Bermejo et al. Beyond classical molecular dynamics: Simulation of quantum-dynamics effects at finite temperatures; the case of condensed molecular hydrogen. Chem. Phys., 317, 198(2005).

    [41] Q. Zhang, J. Chen, X.-Z. Li et al. Quantum simulation of low-temperature metallic liquid hydrogen. Nat. Commun., 4, 2064(2013).

    [42] R. Hoffmann, H. Y. Geng, Q. Wu. Lattice stability and high-pressure melting mechanism of dense hydrogen up to 1.5 TPa. Phys. Rev. B, 92, 104103(2015).

    [43] M. A. Morales, C. Pierleoni, J. M. McMahon et al. Nuclear quantum effects and nonlocal exchange-correlation functionals applied to liquid hydrogen at high pressure. Phys. Rev. Lett., 110, 065702(2013).

    [44] J. Dai, H. Sun, D. Kang et al. Nuclear quantum dynamics in dense hydrogen. Sci. Rep., 4, 5484(2014).

    [45] J. Dai, D. Kang. Dynamic electron-ion collisions and nuclear quantum effects in quantum simulation of warm dense matter. J. Phys.: Condens. Matter, 30, 073002(2018).

    [46] R. Singh, S. Azadi, T. D. Kühne. Nuclear quantum effects induce metallization of dense solid molecular hydrogen. J. Comput. Chem., 39, 262(2018).

    [47] V. V. Karasiev, J. Hinz, S. X. Hu et al. Fully consistent density functional theory determination of the insulator-metal transition boundary in warm dense hydrogen. Phys. Rev. Res., 2, 032065(2020).

    [48] B. Lu, D. Wang, D. Kang et al. Towards the same line of liquid-liquid phase transition of dense hydrogen from various theoretical predictions. Chin. Phys. Lett., 36, 103102(2019).

    [49] W. Kohn, L. J. Sham. Self-consistent equations including exchange and correlation effects. Phys. Rev., 140, A1133(1965).

    [50] W. Kang, S. Zhang, H. Wang et al. Extended application of Kohn-Sham first-principles molecular dynamics method with plane wave approximation at high energy: From cold materials to hot dense plasmas. Phys. Plasmas, 23, 042707(2016).

    [51] W. Kang, S. Zhang, C. Gao et al. Validity boundary of orbital-free molecular dynamics method corresponding to thermal ionization of shell structure. Phys. Rev. B, 94, 205115(2016).

    [52] T. Sjostrom, S. B. Trickey, V. V. Karasiev. Generalized-gradient-approximation noninteracting free-energy functionals for orbital-free density functional calculations. Phys. Rev. B, 86, 115101(2012).

    [53] V. V. Karasiev, D. Chakraborty, O. A. Shukruto et al. Nonempirical generalized gradient approximation free-energy functional for orbital-free simulations. Phys. Rev. B, 88, 161108(R)(2013).

    [54] V. V. Karasiev, K. Luo, S. B. Trickey. Towards accurate orbital-free simulations: A generalized gradient approximation for the noninteracting free energy density functional. Phys. Rev. B, 101, 075116(2020).

    [55] J. Daligault, T. Sjostrom. Gradient corrections to the exchange-correlation free energy. Phys. Rev. B, 90, 155109(2014).

    [56] S. B. Trickey, V. V. Karasiev, L. Calderín. Importance of finite-temperature exchange correlation for warm dense matter calculations. Phys. Rev. E, 93, 063207(2016).

    [57] M. Zaghoo, V. V. Karasiev, S. X. Hu et al. Exchange-correlation thermal effects in shocked deuterium: Softening the principal Hugoniot and thermophysical properties. Phys. Rev. B, 99, 214110(2019).

    [58] J. Vorberger, T. Dornheim, K. Ramakrishna. Influence of finite temperature exchange-correlation effects in hydrogen. Phys. Rev. B, 101, 195129(2020).

    [59] C. Cabrillo, K. Kinugawa, F. J. Bermejo et al. Quantum effects on liquid dynamics as evidenced by the presence of well-defined collective excitations in liquid para-hydrogen. Phys. Rev. Lett., 84, 5359(2000).

    [60] D. Chandler, P. G. Wolynes. Exploiting the isomorphism between quantum theory and classical statistical mechanics of polyatomic fluids. J. Chem. Phys., 74, 4078(1981).

    [61] M. Parrinello, D. Marx. Ab initio path integral molecular dynamics: Basic ideas. J. Chem. Phys., 104, 4077(1996).

    [62] M. Suzuki. Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations. Phys. Lett. A, 146, 319(1990).

    [63] A. R. Hibbs, R. P. Feynman. Quantum Mechanics and Path Intergrals(1965).

    [64] M. Parrinello, A. Rahman. Study of an F center in molten KCl. J. Chem. Phys., 80, 860(1983).

    [65] M. E. Tuckerman, J. Grotendorst, D. Marx, A. Muramatsu. Path integration via molecular dynamics. Quantum Simulations of Complex Many-Body Systems: From Theory to Algorithms, 269-298(2002).

    [66] D. E. Manolopoulos, I. R. Craig. Quantum statistics and classical mechanics: Real time correlation functions from ring polymer molecular dynamics. J. Chem. Phys., 121, 3368(2004).

    [67] M. E. Tuckerman, M. H. Müser, A. Pérez. A comparative study of the centroid and ring-polymer molecular dynamics methods for approximating quantum time correlation functions from path integrals. J. Chem. Phys., 130, 184105(2009).

    [68] M. Ceriotti, M. Rossi, D. E. Manolopoulos. How to remove the spurious resonances from ring polymer molecular dynamics. J. Chem. Phys., 140, 234116(2014).

    [69] M. L. Klein, D. Marx, M. E. Tuckerman et al. Efficient and general algorithms for path integral Car-Parrinello molecular dynamics. J. Chem. Phys., 104, 5579(1996).

    [70] V. V. Karasiev, S. B. Trickey, K. Luo. A simple generalized gradient approximation for the noninteracting kinetic energy density functional. Phys. Rev. B, 98, 041111(R)(2018).

    [71] J. Dufty, V. V. Karasiev, T. Sjostrom et al. Accurate homogeneous electron gas exchange-correlation free energy for local spin-density calculations. Phys. Rev. Lett., 112, 076403(2014).

    [72] T. Sjostrom, T. Dornheim, S. Groth et al. Ab initio exchange-correlation free energy of the uniform electron gas at warm dense matter conditions. Phys. Rev. Lett., 119, 135001(2017).

    [73] S. B. Trickey, V. V. Karasiev, J. W. Dufty. Nonempirical semilocal free-energy density functional for matter under extreme conditions. Phys. Rev. Lett., 120, 076401(2018).

    [74] C. Pierleoni, G. Rillo, M. A. Morales et al. Liquid–liquid phase transition in hydrogen by coupled electron–ion Monte Carlo simulations. Proc. Nat. Acad. Sci. U. S. A., 113, 4953(2016).

    [75] O. Marsalek, V. Kapil, M. Rossi et al. i-PI 2.0: A universal force engine for advanced molecular simulations. Comput. Phys. Commun., 236, 214(2019).

    [76] C. Huang, J. Xia, M. Chen et al. Introducing PROFESS 3.0: An advanced program for orbital-free density functional theory molecular dynamics simulations. Comput. Phys. Commun., 190, 228(2015).

    [77] V. V. Karasiev, S. B. Trickey, T. Sjostrom. Finite-temperature orbital-free DFT molecular dynamics: Coupling Profess and Quantum Espresso. Comput. Phys. Commun., 185, 3240(2014).

    [78] J. W. Dufty, V. V. Karasiev, S. B. Trickey. Status of free-energy representations for the homogeneous electron gas. Phys. Rev. B, 99, 195134(2019).

    [79] M. Ceriotti, M. Parrinello, T. E. Markland et al. Efficient stochastic thermostatting of path integral molecular dynamics. J. Chem. Phys., 133, 124104(2010).

    [80] P. Giannozzi, T. Brumme, O. Andreussi et al. Advanced capabilities for materials modelling with Quantum Espresso. J. Phys.: Condens. Matter, 29, 465901(2017).

    [81] M. A. Morales, D. M. Ceperley, C. Pierleoni. Equation of state of metallic hydrogen from coupled electron-ion Monte Carlo simulations. Phys. Rev. E, 81, 021202(2010).

    [82] C. Pierleoni, E. Liberatore, D. M. Ceperley. Liquid-solid transition in fully ionized hydrogen at ultra-high pressures. J. Chem. Phys., 134, 184505(2011).

    [83] R. W. Hall, B. J. Berne. Nonergodicity in path integral molecular dynamics. J. Chem. Phys., 81, 3641(1984).

    Dongdong Kang, Kai Luo, Keith Runge, S. B. Trickey. Two-temperature warm dense hydrogen as a test of quantum protons driven by orbital-free density functional theory electronic forces[J]. Matter and Radiation at Extremes, 2020, 5(6): 064403
    Download Citation