• Photonics Research
  • Vol. 10, Issue 2, 610 (2022)
Huabing Wu1, Xiang Xi1, Ximing Li1, Yin Poo1, Shiyang Liu2, and Rui-Xin Wu1、*
Author Affiliations
  • 1School of Electronic Science and Engineering, Nanjing University, Nanjing 200023, China
  • 2Key Laboratory of Optical Information Detecting and Display Technology, Zhejiang Normal University, Jinhua 321004, China
  • show less
    DOI: 10.1364/PRJ.437552 Cite this Article Set citation alerts
    Huabing Wu, Xiang Xi, Ximing Li, Yin Poo, Shiyang Liu, Rui-Xin Wu. Manipulating electromagnetic radiation of one-way edge states by magnetic plasmonic gradient metasurfaces[J]. Photonics Research, 2022, 10(2): 610 Copy Citation Text show less
    References

    [1] M. Rechtsman, J. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, A. Szameit. Photonic Floquet topological insulators. Nature, 496, 196-200(2013).

    [2] R. Süsstrunk, S. Huber. Observation of phononic helical edge states in a mechanical topological insulator. Science, 349, 47-50(2015).

    [3] P. H. Zhou, G. G. Liu, Y. H. Yang, Y. H. Hu, S. L. Ma, H. R. Xue, Q. Wang, L. J. Deng, B. L. Zhang. Observation of photonic antichiral edge states. Phys. Rev. Lett., 125, 263603(2020).

    [4] G. Harari, M. A. Bandres, Y. Lumer, M. C. Rechtsman, Y. D. Chong, M. Khajavikhan, D. N. Christodoulides, M. Segev. Topological insulator laser: theory. Science, 359, eaar4003(2018).

    [5] M. A. Bandres, S. Wittek, G. Harari, M. Parto, J. Ren, M. Segev, D. N. Christodoulides, M. Khajavikhan. Topological insulator laser: experiments. Science, 359, eaar4005(2018).

    [6] M. Parto, S. Wittek, H. Hodaei, G. Harari, M. A. Bandres, J. Ren, M. C. Rechtsman, M. Segev, D. N. Christodoulides, M. Khajavikhan. Edge-mode lasing in 1D topological active arrays. Phys. Rev. Lett., 120, 113901(2018).

    [7] K. V. Klitzing, G. Dorda, M. Pepper. New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance. Phys. Rev. Lett., 45, 494-497(1980).

    [8] X. Xi, J. W. Ma, S. Wan, C. H. Dong, X. K. Sun. Observation of chiral edge states in gapped nanomechanical graphene. Sci. Adv., 7, eabe1398(2021).

    [9] K. V. Klitzing. The quantized Hall effect. Rev. Mod. Phys., 58, 519-531(1986).

    [10] B. I. Halperin. Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential. Phys. Rev. B, 25, 2185-2190(1982).

    [11] Z. Wang, Y. D. Chong, J. D. Joannopoulos, M. Soljačić. Reflection-free one-way edge modes in a gyromagnetic photonic crystal. Phys. Rev. Lett., 100, 013905(2008).

    [12] J. X. Fu, R. J. Liu, Z. Y. Li. Robust one-way modes in gyromagnetic photonic crystal waveguides with different interfaces. Appl. Phys. Lett., 97, 041112(2010).

    [13] J. Shen, S. Y. Liu, H. W. Zhang, S. T. Chui, Z. F. Lin, X. Fan, X. M. Kou, Q. Lu, J. Q. Xiao. Robust and tunable one-way magnetic surface plasmon waveguide: an experimental demonstration. Plasmonics, 7, 287-291(2012).

    [14] S. T. Chui, Z. F. Lin. Probing states with macroscopic circulations in magnetic photonic crystals. J. Phys. Condens. Matter, 19, 406233(2007).

    [15] S. Y. Liu, W. L. Lu, Z. F. Lin, S. T. Chui. Magnetically controllable unidirectional electromagnetic waveguiding devices designed with metamaterials. Appl. Phys. Lett., 97, 201113(2010).

    [16] S. Y. Liu, W. L. Lu, Z. F. Lin, S. T. Chui. Molding reflection from metamaterials based on magnetic surface plasmons. Phys. Rev. B, 84, 045425(2011).

    [17] S. Raghu, F. D. M. Haldane. Analogs of quantum-Hall-effect edge states in photonic crystals. Phys. Rev. A, 78, 033834(2008).

    [18] F. D. M. Haldane, S. Raghu. Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett., 100, 013904(2008).

    [19] Y. Poo, R. X. Wu, Z. F. Lin, Y. Yang, C. T. Chan. Experimental realization of self-guiding unidirectional electromagnetic edge states. Phys. Rev. Lett., 106, 093903(2011).

    [20] L. Lu, J. D. Joannopoulos, M. Soljačić. Topological photonics. Nat. Photonics, 8, 821-829(2014).

    [21] X. C. Sun, C. He, X. P. Liu, M. H. Lu, S. N. Zhu, Y. F. Chen. Two-dimensional topological photonic systems. Prog. Quant. Electron., 55, 52-73(2017).

    [22] Y. Wu, C. Li, X. Hu, Y. Ao, Y. Zhao, Q. Gong. Applications of topological photonics in integrated photonic devices. Adv. Opt. Mater., 5, 1700357(2017).

    [23] A. B. Khanikaev, G. Shvets. Two-dimensional topological photonics. Nat. Photonics, 11, 763-773(2017).

    [24] T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, I. Carusotto. Topological photonics. Rev. Mod. Phys., 91, 015006(2019).

    [25] Z. F. Yu, G. Veronis, Z. Wang, S. H. Fan. One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal. Phys. Rev. Lett., 100, 023902(2008).

    [26] W. L. Barnes, A. Dereux, T. W. Ebbesen. Surface plasmon subwavelength optics. Nature, 424, 824-830(2003).

    [27] A. V. Zayats, I. I. Smolyaninov, A. A. Maradudin. Nano-optics of surface plasmon polaritons. Phys. Rep., 408, 131-314(2005).

    [28] S. A. Maier. Plasmonics: Fundamentals and Applications(2007).

    [29] F. J. G. de Abajo. Colloquium: light scattering by particle and hole arrays. Rev. Mod. Phys., 79, 1267-1290(2007).

    [30] J. N. Gollub, D. R. Smith, D. C. Vier, T. Perram, J. J. Mock. Experimental characterization of magnetic surface plasmons on metamaterials with negative permeability. Phys. Rev. B, 71, 195402(2005).

    [31] S. Y. Liu, J. J. Du, Z. F. Lin, R. X. Wu, S. T. Chui. Formation of robust and completely tunable resonant photonic band gaps. Phys. Rev. B, 78, 155101(2008).

    [32] A. Ishikawa, S. Zhang, D. A. Genov, G. Bartal, X. Zhang. Deep subwavelength terahertz waveguides using gap magnetic plasmon. Phys. Rev. Lett., 102, 043904(2009).

    [33] Y. Poo, R. X. Wu, S. Y. Liu, Y. Yang, Z. F. Lin, S. T. Chui. Experimental demonstration of surface morphology independent electromagnetic chiral edge states originated from magnetic plasmon resonance. Appl. Phys. Lett., 101, 081912(2012).

    [34] H. B. Wu, Q. L. Luo, H. J. Chen, Y. Han, X. N. Yu, S. Y. Liu. Magnetically controllable nonreciprocal Goos-Hänchen shift supported by a magnetic plasmonic gradient metasurface. Phys. Rev. A, 99, 033820(2019).

    [35] A. V. Kildishev, A. Boltasseva, V. M. Shalaev. Planar photonics with metasurfaces. Science, 339, 1232009(2013).

    [36] N. F. Yu, F. Capasso. Flat optics with designer metasurfaces. Nat. Mater., 13, 139-150(2014).

    [37] B. Walther, C. Helgert, C. Rockstuhl, F. Setzpfandt, F. Eilenberger, E. B. Kley, F. Lederer, A. Tünnermann, T. Pertsch. Spatial and spectral light shaping with metamaterials. Adv. Mater., 24, 6300-6304(2012).

    [38] Y. B. Xie, W. Q. Wang, H. Y. Chen, A. Konneker, B. I. Popa, S. A. Cummer. Wavefront modulation and subwavelength diffractive acoustics with an acoustic metasurface. Nat. Commun., 5, 5553(2014).

    [39] N. F. Yu, P. Genevet, M. A. Kats, F. Aieta, J. P. Tetienne, F. Capasso, Z. Gaburro. Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science, 334, 333-337(2011).

    [40] X. J. Ni, N. K. Emani, A. V. Kildishev, A. Boltasseva, V. M. Shalaev. Broadband light bending with plasmonic nanoantennas. Science, 335, 427(2012).

    [41] J. P. Balthasar Mueller, N. A. Rubin, R. C. Devlin, B. Groever, F. Capasso. Metasurface polarization optics: independent phase control of arbitrary orthogonal states of polarization. Phys. Rev. Lett., 118, 113901(2017).

    [42] Z. Y. Li, M. H. Kim, C. Wang, Z. H. Han, S. Shrestha, A. C. Overvig, M. Lu, A. Stein, A. M. Agarwal, M. Lončar, N. F. Yu. Controlling propagation and coupling of waveguide modes using phase-gradient metasurfaces. Nat. Nanotechnol., 12, 675-683(2017).

    [43] X. B. Yin, Z. L. Ye, J. Rho, Y. Wang, X. Zhang. Photonic spin Hall effect at metasurfaces. Science, 339, 1405-1407(2013).

    [44] W. J. Luo, S. L. Sun, H. X. Xu, Q. He, L. Zhou. Transmissive ultrathin Pancharatnam-Berry metasurfaces with nearly 100% efficiency. Phys. Rev. Appl., 7, 044033(2017).

    [45] N. F. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, F. Capasso. A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano Lett., 12, 6328-6333(2012).

    [46] A. Pors, S. I. Bozhevolnyi. Efficient and broadband quarter-wave plates by gap-plasmon resonators. Opt. Express, 21, 2942-2952(2013).

    [47] M. Khorasaninejad, Z. Shi, A. Y. Zhu, W. T. Chen, V. Sanjeev, A. Zaidi, F. Capasso. Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion. Nano Lett., 17, 1819-1824(2017).

    [48] O. Avayu, E. Almeida, Y. Prior, T. Ellenbogen. Composite functional metasurfaces for multispectral achromatic optics. Nat. Commun., 8, 14992(2017).

    [49] G. X. Zheng, H. Mühlenbernd, M. Kenney, G. X. Li, T. Zentgraf, S. Zhang. Metasurface holograms reaching 80% efficiency. Nat. Nanotechnol., 10, 308-312(2015).

    [50] W. W. Wan, J. Gao, X. D. Yang. Metasurface holograms for holographic imaging. Adv. Opt. Mater., 5, 1700541(2017).

    [51] X. H. Zhang, J. J. Jin, M. B. Pu, X. L. Li, X. L. Ma, P. Gao, Z. Y. Zhao, Y. Q. Wang, C. T. Wang, X. G. Luo. Ultrahigh-capacity dynamic holographic displays via anisotropic nanoholes. Nanoscale, 9, 1409-1415(2017).

    [52] X. Y. Duan, S. Kamin, N. Liu. Dynamic plasmonic colour display. Nat. Commun., 8, 14606(2017).

    [53] S. L. Sun, Q. He, S. Y. Xiao, Q. Xu, X. Li, L. Zhou. Gradient-index meta-surfaces as a bridge linking propagating waves and surface waves. Nat. Mater., 11, 426-431(2012).

    [54] O. Y. Yermakov, A. I. Ovcharenko, A. A. Bogdanov, I. V. Iorsh, K. Y. Bliokh, Y. S. Kivshar. Spin control of light with hyperbolic metasurfaces. Phys. Rev. B, 94, 075446(2016).

    [55] D. M. Pozar. Microwave Engineering(2012).

    [56] W. H. Eggimann. Scattering of a plane wave on a ferrite cylinder at normal incidence. IRE Trans. Microwave Theory Tech., 8, 440-445(1960).

    [57] D. Felbacq, G. Tayeb, D. Maystre. Scattering by a random set of parallel cylinders. J. Opt. Soc. Am. A, 11, 2526-2538(1994).

    [58] K. M. Leung, Y. Qin. Multiple-scattering calculation of the two-dimensional photonic band structure. Phys. Rev. B, 48, 7767-7771(1993).

    [59] L. M. Li, Z. Q. Zhang. Multiple-scattering approach to finite-sized photonic band-gap materials. Phys. Rev. B, 58, 9587-9590(1998).

    [60] S. Y. Liu, Z. F. Lin. Opening up complete photonic bandgaps in three-dimensional photonic crystals consisting of biaxial dielectric spheres. Phys. Rev. E, 73, 066609(2006).

    Huabing Wu, Xiang Xi, Ximing Li, Yin Poo, Shiyang Liu, Rui-Xin Wu. Manipulating electromagnetic radiation of one-way edge states by magnetic plasmonic gradient metasurfaces[J]. Photonics Research, 2022, 10(2): 610
    Download Citation