• Journal of Inorganic Materials
  • Vol. 37, Issue 4, 361 (2022)
References

[1] X PENG, L PENG, C WU et al. Two dimensional nanomaterials for flexible supercapacitors. Chemical Society Reviews, 43, 3303-3323(2014).

[2] Z GUO, J OUYANG, N Y KIM et al. Emerging two-dimensional nanomaterials for cancer therapy. ChemPhysChem, 20, 2417-2433(2019).

[3] A A BALANDIN. Phononics of graphene and related materials. ACS Nano, 14, 5170-5178(2020).

[4] T WANG, X ZHANG, L MEI et al. A two-step gas/liquid strategy for the production of N-doped defect-rich transition metal dichalcogenide nanosheets and their antibacterial applications. Nanoscale, 12, 8415-8424(2020).

[5] D CUI, D F PEREPICHKA, J M MACLEOD et al. Surface- confined single-layer covalent organic frameworks: design, synthesis and application. Chemical Society Reviews, 49, 2020-2038(2020).

[6] R ZHANG, Q DING, S ZHANG et al. Construction of a continuously layered structure of h-BN nanosheets in the liquid phase via sonication-induced gelation to achieve low friction and wear. Nanoscale, 11, 12553-12562(2019).

[7] Q WANG, D ASTRUC. State of the art and prospects in metal- organic framework (MOF)-based and MOF-derived nanocatalysis. Chemical Reviews, 120, 1438-1511(2020).

[8] J LI, Y SONG, Y WANG et al. Ultrafine PdCu nanoclusters by ultrasonic-assisted reduction on the LDHs/rGO hybrid with significantly enhanced heck reactivity. ACS Applied Materials & Interfaces, 12, 50365-50376(2020).

[9] X LI, X LI, J YANG. Room-temperature ferromagnetism in transition metal embedded borophene nanosheets. Journal of Physical Chemistry Letters, 10, 4417-4421(2019).

[10] M LI, Q HUANG. Recent progress and prospects of ternary layered carbides/nitrides MAX phases and their derived two- dimensional nanolaminates MXenes. Journal of Inorganic Materials, 35, 1-7(2020).

[11] M NAGUIB, M KURTOGLU, V PRESSER et al. Two-dimensional nanocrystals produced by exfoliation of Ti3AlC2. Advanced Materials, 23, 4248-4253(2011).

[12] S KUMAR, Y LEI, N H ALSHAREEF et al. Biofunctionalized two-dimensional Ti3C2MXenes for ultrasensitive detection of cancer biomarker. Biosensors and Bioelectronics, 121, 243-249(2018).

[13] S M GEORGE, B KANDASUBRAMANIAN. Advancements in MXene-polymer composites for various biomedical applications. Ceramics International, 46, 8522-8535(2020).

[14] Y GOGOTSI, B ANASORI. The rise of MXenes. ACS Nano, 13, 8491-8494(2019).

[15] H JIANG, Z WANG, L DONG et al. Co(OH)2/MXene composites for tunable pseudo-capacitance energy storage. Electrochimica Acta, 353, 136607-1-9(2020).

[16] A LEVITT, J ZHANG, G DION et al. MXene-based fibers, yarns, and fabrics for wearable energy storage devices. Advanced Functional Materials, 30, 2000739-1-22(2020).

[17] Q ZHANG, G YI, Z FU et al. Vertically aligned Janus MXene- based aerogels for solar desalination with high efficiency and salt resistance. ACS Nano, 13, 13196-13207(2019).

[18] X ZHAO, X J ZHA, J H PU et al. Macroporous three-dimensional MXene architectures for highly efficient solar steam generation. Journal of Materials Chemistry A, 7, 10446-10455(2019).

[19] P URBANKOWSKI, B ANASORI, T MAKARYAN et al. Synthesis of two-dimensional titanium nitride Ti4N3 (MXene). Nanoscale, 8, 11385-11391(2016).

[20] J LIU, H B ZHANG, R SUN et al. Hydrophobic, flexible, and lightweight MXene foams for high-performance electromagnetic- interference shielding. Advanced Materials, 29, 1702367-1-6(2017).

[21] Y LI, X TIAN, S P GAO et al. Reversible crumpling of 2D titanium carbide (MXene) nanocoatings for stretchable electromagnetic shielding and wearable wireless communication. Advanced Functional Materials, 30, 1907451-1-12(2019).

[22] S ZHU, Y FENG, X LI et al. Two-dimensional titanium carbide (Ti3C2) MXene towards enhancing thermal catalysis decomposition of dihydroxylammonium 5,5′-bistetrazole-1,1′-diolate (TKX-50). Canadian Journal of Chemistry, 98, 697-700(2020).

[23] H ZHANG, Z WANG, F WANG et al. Ti3C2 MXene mediated Prussian blue in situ hybridization and electrochemical signal amplification for the detection of exosomes. Talanta, 224, 121879-1-7(2021).

[24] L LIU, Y YAO, K MA et al. Ultrasensitive photoelectrochemical detection of cancer-related miRNA-141 by carrier recombination inhibition in hierarchical Ti3C2@ReS2. Sensors and Actuators B: Chemical, 331, 129470-1-9(2021).

[25] J CHENG, K HU, Q LIU et al. Electrochemical ultrasensitive detection of CYFRA21-1 using Ti3C2Tx-MXene as enhancer and covalent organic frameworks as labels. Analytical and Bioanalytical Chemistry, 413, 2543-2551(2021).

[26] B K MA, M LI, L Z CHEONG et al. Enzyme-MXene nanosheets: fabrication and application in electrochemical detection of H2O2. Journal of Inorganic Materials, 35, 131-138(2020).

[27] C DAI, Y CHEN, X JING et al. Two-dimensional tantalum carbide (MXenes) composite nanosheets for multiple imaging-guided photothermal tumor ablation. ACS Nano, 11, 12696-12712(2017).

[28] H LIN, S GAO, C DAI et al. A two-dimensional biodegradable niobium carbide (MXene) for photothermal tumor eradication in NIR-I and NIR-II biowindows. Journal of the American Chemical Society, 139, 16235-16247(2017).

[29] G LIU, J ZOU, Q TANG et al. Surface modified Ti3C2 MXene nanosheets for tumor targeting photothermal/photodynamic/chemo synergistic therapy. ACS Appl. Mater. Interfaces, 9, 40077-40086(2017).

[30] H LIN, X WANG, L YU et al. Two-dimensional ultrathin MXene ceramic nanosheets for photothermal conversion. Nano Letters, 17, 384-391(2017).

[31] A GAZZI, L FUSCO, A KHAN et al. Photodynamic therapy based on graphene and MXene in cancer theranostics. Frontiers in Bioengineering and Biotechnology, 7, 295-1-15(2019).

[32] X HAN, J HUANG, H LIN et al. 2D ultrathin MXene-based drug-delivery nanoplatform for synergistic photothermal ablation and chemotherapy of cancer. Advanced Healthcare Materials, 7, 1701394-1-13(2018).

[33] Z LI, L YU, T YANG et al. Theranostic nanomedicine by surface nanopore engineering. Science China Chemistry, 61, 1243-1260(2018).

[34] B ANASORI, M R LUKATSKAYA, Y GOGOTSI. 2D metal carbides and nitrides (MXenes) for energy storage. Nature Reviews Materials, 2, 16098-1-17(2017).

[35] M SOLEYMANIHA, M A SHAHBAZI, A R RAFIEERAD et al. Promoting role of MXene nanosheets in biomedical sciences: therapeutic and biosensing innovations. Advanced Healthcare Materials, 8, 1801137-1-26(2019).

[36] M GHIDIU, M R LUKATSKAYA, M Q ZHAO et al. Conductive two-dimensional titanium carbide ‘clay’ with high volumetric capacitance. Nature, 516, 78-81(2014).

[37] J HALIM, M R LUKATSKAYA, K M COOK et al. Transparent conductive two-dimensional titanium carbide epitaxial thin films. Chemistry of Materials, 26, 2374-2381(2014).

[38] Y LI, H SHAO, Z LIN et al. A general Lewis acidic etching route for preparing MXenes with enhanced electrochemical performance in non-aqueous electrolyte. Nature Materials, 19, 894-899(2020).

[39] T LI, L YAO, Q LIU et al. Fluorine-free synthesis of high-purity Ti3C2Tx (T=OH, O) via alkali treatment. Angewandte Chemie International Edition, 57, 6115-6119(2018).

[40] Z HUANG, X CUI, S LI et al. Two-dimensional MXene-based materials for photothermal therapy. Nanophotonics, 9, 2233-2249(2020).

[41] C XU, L WANG, Z LIU et al. Large-area high-quality 2D ultrathin Mo2C superconducting crystals. Nature Materials, 14, 1135-1141(2015).

[42] I R SHEIN, A L IVANOVSKII. Graphene-like titanium carbides and nitrides Tin+1Cn, Tin+1Nn (n=1, 2, and 3) from de-intercalated MAX phases: first-principles probing of their structural, electronic properties and relative stability. Computational Materials Science, 65, 104-114(2012).

[43] I R SHEIN, A L IVANOVSKII. Planar nano-block structures Tin+1Al0.5Cn and Tin+1Cn (n=1, and 2) from MAX phases: structural, electronic properties and relative stability from first principles calculations. Superlattices and Microstructures, 52, 147-157(2012).

[44] M KURTOGLU, M NAGUIB, Y GOGOTSI et al. First principles study of two-dimensional early transition metal carbides. MRS Communications, 2, 133-137(2012).

[45] D XU, Z LI, L LI et al. Insights into the photothermal conversion of 2D MXene nanomaterials: synthesis, mechanism, and applications. Advanced Functional Materials, 30, 2000712-1-21(2020).

[46] Y CHENG, F YANG, G XIANG et al. Ultrathin tellurium oxide/ammonium tungsten bronze nanoribbon for multimodality imaging and second near-infrared region photothermal therapy. Nano Letters, 19, 1179-1189(2019).

[47] Y ZHOU, W FENG, X QIAN et al. Construction of 2D antimony(III) selenide nanosheets for highly efficient photonic cancer theranostics. ACS Applied Materials & Interfaces, 11, 19712-19723(2019).

[48] A SZUPLEWSKA, D KULPINSKA, A DYBKO et al. 2D Ti2C (MXene) as a novel highly efficient and selective agent for photothermal therapy. Materials Science & Engineering C: Materials for Biological Applications, 98, 874-886(2019).

[49] W FENG, R WANG, Y ZHOU et al. Ultrathin molybdenum carbide MXene with fast biodegradability for highly efficient theory-oriented photonic tumor hyperthermia. Advanced Functional Materials, 29, 1901942-1-15(2019).

[50] S ZADA, W DAI, Z KAI et al. Algae extraction controllable delamination of vanadium carbide nanosheets with enhanced near-infrared photothermal performance. Angewandte Chemie International Edition, 59, 6601-6606(2020).

[51] J SHAO, J ZHANG, C JIANG et al. Biodegradable titanium nitride MXene quantum dots for cancer phototheranostics in NIR-I/II biowindows. Chemical Engineering Journal, 400, 126009-1-12(2020).

[52] Q ZHANG, Q GUO, Q CHEN et al. Highly efficient 2D NIR-II photothermal agent with fenton catalytic activity for cancer synergistic photothermal-chemodynamic therapy. Advanced Science, 7, 1902576-1-10(2020).

[53] D Y ZHANG, H XU, T HE et al. Cobalt carbide-based theranostic agents for in vivo multimodal imaging guided photothermal therapy. Nanoscale, 12, 7174-7179(2020).

[54] J XUAN, Z WANG, Y CHEN et al. Organic-base-driven intercalation and delamination for the production of functionalized titanium carbide nanosheets with superior photothermal therapeutic performance. Angewandte Chemie International Edition, 55, 14569-14574(2016).

[55] L DONG, C YE, L ZHENG et al. Two-dimensional metal carbides and nitrides (MXenes): preparation, property, and applications in cancer therapy. Nanophotonics, 9, 2125-2145(2020).

[56] A SUNDARAM, J S PONRAJ, C WANG et al. Engineering of 2D transition metal carbides and nitrides MXenes for cancer therapeutics and diagnostics. Journal of Materials Chemistry B, 8, 4990-5013(2020).

[57] L BAI, W YI, T SUN et al. Surface modification engineering of two-dimensional titanium carbide for efficient synergistic multitherapy of breast cancer. Journal of Materials Chemistry B, 8, 6402-6417(2020).

[58] Z LI, H ZHANG, J HAN et al. Surface nanopore engineering of 2D MXenes for targeted and synergistic multitherapies of hepatocellular carcinoma. Advanced Materials, 30, 1706981-1-11(2018).

[59] X HAN, X JING, D YANG et al. Therapeutic mesopore construction on 2D Nb2C MXenes for targeted and enhanced chemo- photothermal cancer therapy in NIR-II biowindow. Theranostics, 8, 4491-4508(2018).

[60] H XIANG, H LIN, L YU et al. Hypoxia-irrelevant photonic thermodynamic cancer nanomedicine. ACS Nano, 13, 2223-2235(2019).

[61] H YIN, X GUAN, H LIN et al. Nanomedicine-enabled photonic thermogaseous cancer therapy. Advanced Science, 7, 1901954-1-12(2020).

[62] Z LIU, H LIN, M ZHAO et al. 2D superparamagnetic tantalum carbide composite MXenes for efficient breast-cancer theranostics. Theranostics, 8, 1648-1664(2018).

[63] Y WANG, W FENG, Y CHEN. Chemistry of two-dimensional MXene nanosheets in theranostic nanomedicine. Chinese Chemical Letters, 31, 937-946(2020).

[64] C DAI, H LIN, G XU et al. Biocompatible 2D titanium carbide (MXenes) composite nanosheets for pH-responsive MRI-guided tumor hyperthermia. Chemistry of Materials, 29, 8637-8652(2017).

[65] R LIANG, Y LI, M HUO et al. Triggering sequential catalytic fenton reaction on 2D MXenes for hyperthermia-augmented synergistic nanocatalytic cancer therapy. ACS Applied Materials & Interfaces, 11, 42917-42931(2019).

[66] L ZONG, H WU, H LIN et al. A polyoxometalate-functionalized two-dimensional titanium carbide composite MXene for effective cancer theranostics. Nano Research, 11, 4149-4168(2018).

[67] W TANG, Z DONG, R ZHANG et al. Multifunctional two-dimensional core-shell MXene@gold nanocomposites for enhanced photo-radio combined therapy in the second biological window. ACS Nano, 13, 284-294(2019).

[68] X YU, X CAI, H CUI et al. Fluorine-free preparation of titanium carbide MXene quantum dots with high near-infrared photothermal performances for cancer therapy. Nanoscale, 9, 17859-17864(2017).

[69] H LIN, Y WANG, S GAO et al. Theranostic 2D tantalum carbide (MXene). Advanced Materials, 30, 1703284(2018).

[70] Q ZHANG, W HUANG, C YANG et al. The theranostic nanoagent Mo2C for multi-modal imaging-guided cancer synergistic phototherapy. Biomaterials Science, 7, 2729-2739(2019).

[71] E A HUSSEIN, M M ZAGHO, B R RIZEQ et al. Plasmonic MXene-based nanocomposites exhibiting photothermal therapeutic effects with lower acute toxicity than pure MXene. International Journal of Nanomedicine, 14, 4529-4539(2019).

[72] A SZUPLEWSKA, A WOJCIECHOWSKA, S POZNIAK et al. Multilayered stable 2D nano-sheets of Ti2NTx MXene: synthesis, characterization, and anticancer activity. Journal of Nanobiotechnology, 17, 114-1-14(2019).

[73] A M JASTRZĘBSKA, A SZUPLEWSKA, A WOJCIECHOWSKA et al. On tuning the cytotoxicity of Ti3C2 (MXene) flakes to cancerous and benign cells by post-delamination surface modifications. 2D Materials, 7, 025018-1-12(2020).

[74] S LIN, H LIN, M YANG et al. A two-dimensional MXene potentiates a therapeutic microneedle patch for photonic implantable medicine in the second NIR biowindow. Nanoscale, 12, 10265-10276(2020).

[75] B ZHOU, Y PU, H LIN et al. In situ phase-changeable 2D MXene/zein bio-injection for shear wave elastography-guided tumor ablation in NIR-II bio-window. Journal of Materials Chemistry B, 8, 5257-5266(2020).

[76] X LI, F LIU, D HUANG et al. Nonoxidized MXene quantum dots prepared by microexplosion method for cancer catalytic therapy. Advanced Functional Materials, 30, 2000308-1-10(2020).

[77] A M JASTRZĘBSKA, A SZUPLEWSKA, A WOJCIECHOWSKA et al. Juggling surface charges of 2D niobium carbide MXenes for a reactive oxygen species scavenging and effective targeting of the malignant melanoma cell cycle into programmed cell death. ACS Sustainable Chemistry & Engineering, 8, 7942-7951(2020).

[78] Y LIU, Q HAN, W YANG et al. Two-dimensional MXene/cobalt nanowire heterojunction for controlled drug delivery and chemo-photothermal therapy. Materials Science & Engineering C: Materials for Biological Applications, 116, 111212-1-11(2020).

[79] N TAO, Y LIU, Y WU et al. Minimally invasive antitumor therapy using biodegradable nanocomposite micellar hydrogel with functionalities of NIR-II photothermal ablation and vascular disruption. ACS Applied Biomaterials, 3, 4531-4542(2020).

[80] Y GUO, H WANG, X FENG et al. 3D MXene microspheres with honeycomb architecture for tumor photothermal/photodynamic /chemo combination therapy. Nanotechnology, 32, 195701-1-11(2021).

[81] S ZHOU, C GU, Z LI et al. Ti3C2Tx MXene and polyoxometalate nanohybrid embedded with polypyrrole: ultra-sensitive platform for the detection of osteopontin. Applied Surface Science, 498, 143889(2019).

[82] J YIN, S PAN, X GUO et al. Nb2C MXene-functionalized scaffolds enables osteosarcoma phototherapy and angiogenesis/ osteogenesis of bone defects. Nano-Micro Letters, 13, 30-1-18(2021).