• Photonics Research
  • Vol. 11, Issue 12, 2185 (2023)
Yiqun Zhang1、2、†, Mingfeng Xu2、3、†, Mingbo Pu2、3、4, Mengjie Zhou5, Jiazheng Ding5, Shuangcheng Chen5, Kun Qiu1, Ning Jiang1、6, and Xiangang Luo2、4、*
Author Affiliations
  • 1School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
  • 2State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
  • 3Research Center on Vector Optical Fields, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China
  • 4School of Optoelectronics, University of Chinese Academy of Sciences, Beijing 100049, China
  • 5Tianfu Xinglong Lake Laboratory, Chengdu 610299, China
  • 6e-mail: uestc_nj@uestc.edu.cn
  • show less
    DOI: 10.1364/PRJ.496535 Cite this Article Set citation alerts
    Yiqun Zhang, Mingfeng Xu, Mingbo Pu, Mengjie Zhou, Jiazheng Ding, Shuangcheng Chen, Kun Qiu, Ning Jiang, Xiangang Luo. Simultaneously enhancing capacity and security in free-space optical chaotic communication utilizing orbital angular momentum[J]. Photonics Research, 2023, 11(12): 2185 Copy Citation Text show less
    References

    [1] R. Zhang, N. Hu, H. Zhou, K. Zou, X. Su, Y. Zhou, H. Song, K. Pang, H. Song, A. Minoofar, Z. Zhao, C. Liu, K. Manukyan, A. Almaiman, B. Lynn, R. Boyd, M. Tur, A. Willner. Turbulence-resilient pilot-assisted self-coherent free-space optical communications using automatic optoelectronic mixing of many modes. Nat. Photonics, 15, 743-750(2021).

    [2] Z. Zhu, M. Janasik, A. Fyffe, D. Hay, Y. Zhou, B. Kantor, T. Winder, R. W. Boyd, G. Leuchs, Z. Shi. Compensation-free high-dimensional free-space optical communication using turbulence-resilient vector beams. Nat. Commun., 12, 1666(2021).

    [3] W. Shao, Y. Wang, S. Jia, Z. Xie, D. Gao, W. Wang, D. Zhang, P. Liao, B. Little, S. Chu, W. Zhao, W. Zhang, W. Wang, X. Xie. Terabit FSO communication based on a soliton microcomb. Photon. Res., 10, 2802-2808(2022).

    [4] G. Gibson, J. Courtial, M. Padgett. Free-space information transfer using light beams carrying orbital angular momentum. Opt. Express, 12, 5448-5456(2004).

    [5] M. Li, Y. Hong, Y. Song, X. Zhang. Effect of controllable parameter synchronization on the ensemble average bit error rate of space-to-ground downlink chaos laser communication system. Opt. Express, 26, 2954-2964(2018).

    [6] A. Argyris, D. Syvridis, L. Larger, V. Annovazzi-Lodi, P. Colet, I. Fischer, J. García-Ojalvo, C. R. Mirasso, L. Pesquera, K. A. Shore. Chaos-based communications at high bit rates using commercial fibre-optic links. Nature, 438, 343-346(2005).

    [7] A. Zhao, N. Jiang, S. Liu, Y. Zhang, K. Qiu. Generation of synchronized wideband complex signals and its application in secure optical communication. Opt. Express, 28, 23363-23373(2020).

    [8] L. Wang, X. Chen, X. Mao, L. Jiang, S. Li, Y. Sun, Y. Wang, L. Yan, A. Wang. Performance improvement of coherent optical chaos communication using probabilistic shaping. Opt. Lett., 48, 1008-1011(2023).

    [9] L. Jiang, J. Feng, L. Yan, A. Lin, S. Li, H. Yang, Y. Dong, L. Wang, A. Wang, Y. Wang, W. Pan, B. Luo. Chaotic optical communications at 56  Gbit/s over 100-km fiber transmission based on a chaos generation model driven by long short-term memory networks. Opt. Lett., 47, 2382-2385(2022).

    [10] A. Zhao, N. Jiang, S. Liu, Y. Zhang, K. Qiu. Physical layer encryption for WDM optical communication systems using private chaotic phase scrambling. J. Lightwave Technol., 39, 2288-2295(2021).

    [11] Z. Gao, Q. Wu, L. Liao, B. Su, X. Gao, S. Fu, Z. Li, Y. Wang, Y. Qin. Experimental demonstration of synchronous privacy enhanced chaotic temporal phase en/decryption for high speed secure optical communication. Opt. Express, 30, 31209-31219(2022).

    [12] N. Jiang, A. Zhao, C. Xue, J. Tang, K. Qiu. Physical secure optical communication based on private chaotic spectral phase encryption/decryption. Opt. Lett., 44, 1536-1539(2019).

    [13] L. Wang, Y. Guo, D. Wang, Y. Wang, A. Wang. Experiment on 10-Gb/s message transmission using an all-optical chaotic secure communication system. Opt. Commun., 453, 124350(2019).

    [14] J. Ke, L. Yi, Z. Yang, Y. Yang, Q. Zhuge, Y. Chen, W. Hu. 32  Gb/s chaotic optical communications by deep-learning-based chaos synchronization. Opt. Lett., 44, 5776-5779(2019).

    [15] N. Rulkov, M. Vorontsov, L. Illing. Chaotic free-space laser communication over a turbulent channel. Phys. Rev. Lett., 89, 277905(2002).

    [16] V. Annovazzi-Lodi, G. Aromataris, M. Benedetti, S. Merlo. Secure chaotic transmission on a free-space optics data link. IEEE J. Quantum Electron., 44, 1089-1095(2008).

    [17] M. Sepantaie, N. Namazi, A. Sepantaie. Spectral analysis and implementation of secure chaotic free-space optical communication systems. Opt. Eng., 57, 106101(2018).

    [18] O. Spitz, A. Herdt, J. Wu, G. Maisons, M. Carras, C. Wong, W. Elsäßer, F. Grillot. Private communication with quantum cascade laser photonic chaos. Nat. Commun., 12, 3327(2021).

    [19] W. Li, Y. Jiang, W. Fu, S. Wu, M. Li. Atmospheric intensity scintillation effect on BER performance of space downlink chaos laser communication system. Opt. Eng., 61, 066102(2022).

    [20] Y. Zhang, M. Xu, M. Pu, Q. Chen, M. Zhou, S. Chen, K. Qiu, N. Jiang, X. Luo. Experimental demonstration of an 8-Gbit/s free-space secure optical communication link using all-optical chaos modulation. Opt. Lett., 48, 1470-1473(2023).

    [21] Y. Fu, M. Cheng, X. Jiang, Q. Yu, L. Huang, L. Deng, D. Liu. High-speed optical secure communication with an external noise source and an internal time-delayed feedback loop. Photon. Res., 7, 1306-1313(2019).

    [22] T. Malica, G. Bouchez, D. Wolfersberger, M. Sciamanna. Spatiotemporal complexity of chaos in a phase-conjugate feedback laser system. Opt. Lett., 45, 819-822(2020).

    [23] D. Chang, Z. Zhong, J. Tang, P. Spencer, Y. Hong. Flat broadband chaos generation in a discrete-mode laser subject to optical feedback. Opt. Express, 28, 39076-39083(2020).

    [24] N. Jiang, Y. Wang, A. Zhao, S. Liu, Y. Zhang, L. Chen, B. Li, K. Qiu. Simultaneous bandwidth-enhanced and time delay signature-suppressed chaos generation in semiconductor laser subject to feedback from parallel coupling ring resonators. Opt. Express, 28, 1999-2009(2020).

    [25] M. Xu, F. Zhang, M. Pu, X. Li, X. Ma, Y. Guo, R. Zhang, M. Hong, X. Luo. Metasurface spatiotemporal dynamics and asymmetric photonic spin-orbit interactions mediated vector-polarization optical chaos. Phys. Rev. Res., 3, 013215(2021).

    [26] A. Zhao, N. Jiang, J. Peng, S. Liu, Y. Zhang, K. Qiu. Parallel generation of low-correlation wideband complex chaotic signals using CW laser and external-cavity laser with self-phase-modulated injection. Opto-Electron. Adv., 5, 200026(2022).

    [27] M. Chai, L. Qiao, X. Wei, S. Li, C. Zhang, Q. Wang, H. Xu, M. Zhang. Broadband chaos generation utilizing a wavelength-tunable monolithically integrated chaotic semiconductor laser subject to optical feedback. Opt. Express, 30, 44717-44725(2022).

    [28] M. Xu, Q. He, M. Pu, F. Zhang, L. Li, D. Sang, Y. Guo, R. Zhang, X. Li, X. Ma, X. Luo. Emerging long-range order from freeform disordered metasurface. Adv. Mater., 34, 2108709(2022).

    [29] Y. Zeng, P. Zhou, Y. Huang, P. Mu, N. Li. Wideband and high-dimensional chaos generation using optically pumped spin-VCSELs. Opt. Express, 31, 948-963(2023).

    [30] A. Yao, M. Padgett. Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photon., 3, 161-204(2011).

    [31] M. Padgett. Orbital angular momentum 25 years on. Opt. Express, 25, 11265-11274(2017).

    [32] A. Willner, K. Pang, H. Song, K. Zou, H. Zhou. Orbital angular momentum of light for communications. Appl. Phys. Rev., 8, 041312(2021).

    [33] J. Wang, J. Liu, S. Li, Y. Zhao, J. Du, L. Zhu. Orbital angular momentum and beyond in free-space optical communications. Nanophotonics, 11, 645-680(2022).

    [34] S. Khonina, N. Kazanskiy, M. Butt, S. Karpeev. Optical multiplexing techniques and their marriage for on-chip and optical fiber communication: a review. Opto Electron. Adv., 5, 210127(2022).

    [35] J. Wang, J. Yang, I. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, M. Tur, A. Willner. Terabit free-space data transmission employing orbital angular momentum multiplexing. Nat. Photonics, 6, 488-496(2012).

    [36] T. Lei, M. Zhang, Y. Li, P. Jia, G. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, X. Yuan. Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings. Light Sci. Appl., 4, e257(2015).

    [37] L. Zhu, M. Deng, B. Lu, X. Guo, A. Wang. Turbulence-resistant high-capacity free-space optical communications using OAM mode group multiplexing. Opt. Express, 31, 14454-14463(2023).

    [38] M. Lavery, C. Peuntinger, K. Gunthner, P. Banzer, D. Elser, R. Boyd, M. Padgett, C. Marquardt, G. Leuchs. Free-space propagation of high-dimensional structured optical fields in an urban environment. Sci. Adv., 3, e1700552(2017).

    [39] J. Zhang, J. Liu, L. Shen, L. Zhang, J. Luo, J. Liu, S. Yu. Mode-division multiplexed transmission of wavelength-division multiplexing signals over a 100-km single-span orbital angular momentum fiber. Photon. Res., 8, 1236-1242(2020).

    [40] L. Zhu, A. Wang, S. Chen, J. Liu, Q. Mo, C. Du, J. Wang. Orbital angular momentum mode groups multiplexing transmission over 2.6-km conventional multi-mode fiber. Opt. Express, 25, 25637-25645(2017).

    [41] H. Ren, X. Li, Q. Zhang, M. Gu. On-chip noninterference angular momentum multiplexing of broadband light. Science, 352, 805-809(2016).

    [42] Y. Ren, G. Xie, H. Huang, N. Ahmed, Y. Yan, L. Li, C. Bao, M. Lavery, M. Tur, M. Neifeld, R. Boyd, J. Shapiro, A. Willner. Adaptive-optics-based simultaneous pre- and post-turbulence compensation of multiple orbital-angular-momentum beams in a bidirectional free-space optical link. Optica, 1, 376-382(2014).

    [43] Y. Guo, L. Zhong, L. Min, J. Wang, Y. Wu, K. Chen, K. Wei, C. Rao. Adaptive optics based on machine learning: a review. Opto-Electron. Adv., 5, 200082(2022).

    [44] L. Li, R. Zhang, P. Liao, Y. Cao, H. Song, Y. Zhao, J. Du, Z. Zhao, C. Liu, K. Pang, H. Song, A. Almaiman, D. Starodubov, B. Lynn, R. Bock, M. Tur, A. Molisch, A. Willner. Mitigation for turbulence effects in a 40  Gbit/s orbital-angular-momentum-multiplexed free-space optical link between a ground station and a retro-reflecting UAV using MIMO equalization. Opt. Lett., 44, 5181-5184(2019).

    [45] X. Luo, M. Pu, F. Zhang, M. Xu, Y. Guo, X. Li, X. Ma. Vector optical field manipulation via structural functional materials: tutorial. J. Appl. Phys., 131, 181101(2022).

    [46] X. Wang, T. Wu, C. Dong, H. Zhu, Z. Zhu, S. Zhao. Integrating deep learning to achieve phase compensation for free-space orbital-angular-momentum-encoded quantum key distribution under atmospheric turbulence. Photon. Res., 9, B9-B17(2021).

    [47] X. Luo. Multiscale optical field manipulation via planar digital optics. ACS Photon., 10, 2116-2127(2023).

    Yiqun Zhang, Mingfeng Xu, Mingbo Pu, Mengjie Zhou, Jiazheng Ding, Shuangcheng Chen, Kun Qiu, Ning Jiang, Xiangang Luo. Simultaneously enhancing capacity and security in free-space optical chaotic communication utilizing orbital angular momentum[J]. Photonics Research, 2023, 11(12): 2185
    Download Citation