• Photonics Research
  • Vol. 6, Issue 1, 1 (2018)
Yanchun Yin, Xiaoming Ren, Yang Wang, Fengjiang Zhuang, Jie Li, and Zenghu Chang*
Author Affiliations
  • Institute for the Frontier of Attosecond Science and Technology, CREOL and Department of Physics, University of Central Florida, Orlando, Florida 32816, USA
  • show less
    DOI: 10.1364/PRJ.6.000001 Cite this Article Set citation alerts
    Yanchun Yin, Xiaoming Ren, Yang Wang, Fengjiang Zhuang, Jie Li, Zenghu Chang. Generation of high-energy narrowband 2.05  μm pulses for seeding a Ho:YLF laser[J]. Photonics Research, 2018, 6(1): 1 Copy Citation Text show less
    References

    [1] Z. Chang, P. Corkum. Attosecond photon sources: the first decade and beyond. J. Opt. Soc. Am. B, 27, B9-B17(2010).

    [2] Z. Chang, P. B. Corkum, S. R. Leone. Attosecond optics and technology: progress to date and future prospects. J. Opt. Soc. Am. B, 33, 1081-1097(2016).

    [3] Y. S. You, M. Wu, Y. Yin, A. Chew, X. Ren, S. Gholam-Mirzaei, D. A. Browne, M. Chini, Z. Chang, K. J. Schafer, M. B. Gaarde, S. Ghimire. Laser waveform control of extreme ultraviolet high harmonics from solids. Opt. Lett., 42, 1816-1819(2017).

    [4] K. Zhao, Q. Zhang, M. Chini, Y. Wu, X. Wang, Z. Chang. Tailoring a 67 attosecond pulse through advantageous phase-mismatch. Opt. Lett., 37, 3891-3893(2012).

    [5] B. Shan, Z. Chang. Dramatic extension of the high-order harmonic cutoff by using a long-wavelength driving field. Phys. Rev. A, 65, 011804(2001).

    [6] N. Ishii, K. Kaneshima, K. Kitano, T. Kanai, S. Watanabe, J. Itatani. Carrier-envelope phase-dependent high harmonic generation in the water window using few-cycle infrared pulses. Nat. Commun., 5, 3331(2014).

    [7] F. Silva, S. M. Teichmann, S. L. Cousin, M. Hemmer, J. Biegert. Spatiotemporal isolation of attosecond soft x-ray pulses in the water window. Nat. Commun., 6, 6611(2015).

    [8] J. Li, X. Ren, Y. Yin, Y. Cheng, E. Cunningham, Y. Wu, Z. Chang. Polarization gating of high harmonic generation in the water window. Appl. Phys. Lett., 108, 231102(2016).

    [9] T. Fuji, N. Ishii, C. Y. Teisset, X. Gu, T. Metzger, A. Baltuska, N. Forget, D. Kaplan, A. Galvanauskas, F. Krausz. Parametric amplification of few-cycle carrier-envelope phase-stable pulses at 2.1  μm. Opt. Lett., 31, 1103-1105(2006).

    [10] C. Vozzi, F. Calegari, E. Benedetti, S. Gasilov, G. Sansone, G. Cerullo, M. Nisoli, S. D. Silvestri, S. Stagira. Millijoule-level phase-stabilized few-optical-cycle infrared parametric source. Opt. Lett., 32, 2957-2959(2007).

    [11] C. Li, D. Wang, L. Song, J. Liu, P. Liu, C. Xu, Y. Leng, R. Li, Z. Xu. Generation of carrier-envelope phase stabilized intense 1.5 cycle pulses at 1.75  μm. Opt. Express, 19, 6783-6789(2011).

    [12] O. D. Mücke, S. Ališauskas, A. J. Verhoef, A. Pugžlys, A. Baltuška, V. Smilgevičius, J. Pocius, L. Giniūnas, R. Danielius, N. Forget. Self-compression of millijoule 1.5  μm pulses. Opt. Lett., 34, 2498-2500(2009).

    [13] Y. Deng, A. Schwarz, H. Fattahi, M. Ueffing, X. Gu, M. Ossiander, T. Metzger, V. Pervak, H. Ishizuki, T. Taira, T. Kobayashi, G. Marcus, F. Krausz, R. Kienberger, N. Karpowicz. Carrier-envelope-phase-stable, 1.2  mJ, 1.5 cycle laser pulses at 2.1  μm. Opt. Lett., 37, 4973-4975(2012).

    [14] N. Ishii, K. Kaneshima, K. Kitano, T. Kanai, S. Watanabe, J. Itatani. Sub-two-cycle, carrier-envelope phase-stable, intense optical pulses at 1.6  μm from a BiB3O6 optical parametric chirped-pulse amplifier. Opt. Lett., 37, 4182-4184(2012).

    [15] K.-H. Hong, C.-J. Lai, J. P. Siqueira, P. Krogen, J. Moses, C.-L. Chang, G. J. Stein, L. E. Zapata, F. X. Kärtner. Multi-mJ, kHz, 2.1  μm optical parametric chirped-pulse amplifier and high-flux soft x-ray high-harmonic generation. Opt. Lett., 39, 3145-3148(2014).

    [16] N. Ishii, K. Kaneshima, T. Kanai, S. Watanabe, J. Itatani. Sub-two-cycle millijoule optical pulses at 1600  nm from a BiB3O6 optical parametric chirped-pulse amplifier. Conference on Lasers and Electro-Optics (CLEO), SF1M.3(2015).

    [17] Y. Yin, J. Li, X. Ren, K. Zhao, Y. Wu, E. Cunningham, Z. Chang. High-efficiency optical parametric chirped-pulse amplifier in BiB3O6 for generation of 3  mJ, two-cycle, carrier-envelope-phase-stable pulses at 1.7  μm. Opt. Lett., 41, 1142-1145(2016).

    [18] Y. Fu, E. J. Takahashi, K. Midorikawa. High-energy infrared femtosecond pulses generated by dual-chirped optical parametric amplification. Opt. Lett., 40, 5082-5085(2015).

    [19] Y. Fu, E. J. Takahashi, Q. Zhang, P. Lu, K. Midorikawa. Optimization and characterization of dual-chirped optical parametric amplification. J. Opt., 17, 124001(2015).

    [20] Y. Fu, E. J. Takahashi, K. Midorikawa. Energy scaling of infrared femtosecond pulses by dual-chirped optical parametric amplification. IEEE Photon. J., 9, 1-8(2017).

    [21] B. E. Schmidt, N. Thir, M. Boivin, A. Larame, F. Poitras, G. Lebrun, T. Ozaki, H. Ibrahim, F. Lgar. Frequency domain optical parametric amplification. Nat. Commun., 5, 3643(2014).

    [22] J. Li, X. Ren, Y. Yin, K. Zhao, A. Chew, Y. Cheng, E. Cunningham, Y. Wang, S. Hu, Y. Wu, M. Chini, Z. Chang. 53-attosecond x-ray pulses reach the carbon k-edge. Nat. Commun., 8, 186(2017).

    [23] G. Andriukaitis, T. Balčiūnas, S. Ališauskas, A. Pugžlys, A. Baltuška, T. Popmintchev, M.-C. Chen, M. M. Murnane, H. C. Kapteyn. 90  GW peak power few-cycle mid-infrared pulses from an optical parametric amplifier. Opt. Lett., 36, 2755-2757(2011).

    [24] K. Zhao, H. Zhong, P. Yuan, G. Xie, J. Wang, J. Ma, L. Qian. Generation of 120  GW mid-infrared pulses from a widely tunable noncollinear optical parametric amplifier. Opt. Lett., 38, 2159-2161(2013).

    [25] S. Wandel, G. Xu, Y. Yin, I. Jovanovic. Parametric generation of energetic short mid-infrared pulses for dielectric laser acceleration. J. Phys. B, 47, 234016(2014).

    [26] S. Wandel, M.-W. Lin, Y. Yin, G. Xu, I. Jovanovic. Parametric generation and characterization of femtosecond mid-infrared pulses in ZnGeP2. Opt. Express, 24, 5287-5299(2016).

    [27] D. Sanchez, M. Hemmer, M. Baudisch, S. L. Cousin, K. Zawilski, P. Schunemann, O. Chalus, C. Simon-Boisson, J. Biegert. 7  μm, ultrafast, sub-millijoule-level mid-infrared optical parametric chirped pulse amplifier pumped at 2  μm. Optica, 3, 147-150(2016).

    [28] P. Malevich, T. Kanai, H. Hoogland, R. Holzwarth, A. Baltuška, A. Pugžlys. Broadband mid-infrared pulses from potassium titanyl arsenate/zinc germanium phosphate optical parametric amplifier pumped by Tm, Ho-fiber-seeded Ho:YAG chirped-pulse amplifier. Opt. Lett., 41, 930-933(2016).

    [29] Y. Yin, J. Li, X. Ren, Y. Wang, A. Chew, Z. Chang. High-energy two-cycle pulses at 3.2  μm by a broadband-pumped dual-chirped optical parametric amplification. Opt. Express, 24, 24989-24998(2016).

    [30] Y. Yin, A. Chew, X. Ren, J. Li, Y. Wang, Y. Wu, Z. Chang. Towards terawatt sub-cycle long-wave infrared pulses via chirped optical parametric amplification and indirect pulse shaping. Sci. Rep., 8, 45794(2017).

    [31] G. Xu, S. Wandel, I. Jovanovic. Nondegenerate parametric generation of 2.2-mJ, few-cycle 2.05-μm pulses using a mixed phase matching scheme. Rev. Sci. Instrum., 85, 023102(2014).

    [32] K. Murari, H. Cankaya, P. Kroetz, G. Cirmi, P. Li, A. Ruehl, I. Hartl, F. X. Kärtner. Intracavity gain shaping in millijoule-level, high gain Ho:YLF regenerative amplifiers. Opt. Lett., 41, 1114-1117(2016).

    [33] Q. Zhang, E. J. Takahashi, O. D. Mücke, P. Lu, K. Midorikawa. Dual-chirped optical parametric amplification for generating few hundred mJ infrared pulses. Opt. Express, 19, 7190-7212(2011).

    [34] Y. Fu, E. Takahashi, B. Xue, K. Midorikawa. Generation of a 200-mJ class infrared femtosecond laser by dual-chirped optical parametric amplification. Conference on Lasers and Electro-Optics (CLEO), SM3I.3(2017).

    [35] S. Wandel, M.-W. Lin, Y. Yin, G. Xu, I. Jovanovic. Bandwidth control in 5 μm pulse generation by dual-chirped optical parametric amplification. J. Opt. Soc. Am. B, 33, 1580-1587(2016).

    [36] Z. Hong, Q. Zhang, S. A. Rezvani, P. Lan, P. Lu. Tunable few-cycle pulses from a dual-chirped optical parametric amplifier pumped by broadband laser. Opt. Laser Technol., 98, 169-177(2018).

    [37] M. Hemmer, D. Sánchez, M. Jelínek, V. Smirnov, H. Jelinkova, V. Kubeček, J. Biegert. 2-μm wavelength, high-energy Ho:YLF chirped-pulse amplifier for mid-infrared OPCPA. Opt. Lett., 40, 451-454(2015).

    [38] L. von Grafenstein, M. Bock, D. Ueberschaer, U. Griebner, T. Elsaesser. Ho:YLF chirped pulse amplification at kilohertz repetition rates-4.3  ps pulses at 2  μm with GW peak power. Opt. Lett., 41, 4668-4671(2016).

    [39] Y. C. Yin, D. French, I. Jovanovic. Ultrafast temporal pulse shaping via phase-sensitive three-wave mixing. Opt. Express, 18, 18471-18482(2010).

    [40] Y. R. Shen. The Principle of Nonlinear Optics(2003).

    [41] M. D. Feit, J. A. Fleck. Computation of mode properties in optical fiber waveguides by a propagating beam method. Appl. Opt., 19, 1154-1164(1980).

    Yanchun Yin, Xiaoming Ren, Yang Wang, Fengjiang Zhuang, Jie Li, Zenghu Chang. Generation of high-energy narrowband 2.05  μm pulses for seeding a Ho:YLF laser[J]. Photonics Research, 2018, 6(1): 1
    Download Citation