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We experimentally demonstrate efficient generation of high-energy (82 μJ) narrowband 2.05 μm pulses pumped
with 1 mJ broadband Ti:sapphire laser pulses, utilizing dual-chirped optical parametric amplification (DC-OPA)
in a BBO crystal. The narrowband 2.05 μm pulses will be primarily used for seeding an Ho:YLF laser, which
solves the synchronization issue when Ti:sapphire and Ho:YLF lasers are needed for developing midinfrared
lasers. The narrowband 2.05 μm pulse from the unique DC-OPA design can seed the Ho:YLF laser much more
efficiently than the broadband 2.05 μm pulse from traditional OPA technology. © 2017 Chinese Laser Press
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1. INTRODUCTION

Development of high-energy and few-cycle lasers has been of
great interest in the ultrafast laser community due to their
applications primarily in high harmonic generation (HHG)
and attosecond science [1–3]. The shortest (67 as) extreme
ultraviolet attosecond pulses have been previously achieved
in HHG driven by spectrally broadened few-cycle Ti:sapphire
lasers [4]. To extend the HHG cutoff photon energy and thus
produce shorter attosecond pulses, long wavelength driving
lasers are needed because of the quadratic scaling of the ponder-
omotive energy with driving wavelength [5–8]. Few-cycle
intense infrared (IR) laser pulses around 2 μm have been ex-
tensively produced by taking advantage of optical parametric
chirped pulse amplification (OPCPA) pumped with few pico-
second laser pulses [9–17], dual-chirped optical parametric
amplification (DC-OPA) [18–20], and frequency domain
OPA [21]. Recently, 53 soft X-ray pulses reaching carbon
K-edge were demonstrated by using an mJ-level and two-cycle
IR driving laser at 1.7 μm [22].

To significantly increase center photon energy and band-
width of high harmonics for generating shorter attosecond
or even zeptosecond X-ray pulses, the development of high-
energy few-cycle pulses farther into the mid-IR is in demand.
Rapid progress has been made on the generation of high-
energy short-pulse mid-IR laser sources above 3 μm [23–29].
However, the spectral bandwidth has not reached one octave,
which limits the pulse duration to multicycle. We have de-
signed a scheme for generation of terawatt subcycle 4–12 μm

pulses through OPCPA in ZGeP2 pumped by an Ho:YLF
laser [30]. Because the signal of the OPCPA is from a
Ti:sapphire laser and the pump is from an Ho:YLF laser,
the Ho:YLF laser should also be derived from the Ti:sapphire
laser in order to facilitate synchronization between the signal
and the pump. In addition, a high-energy seed for the Ho:YLF
laser is needed to avoid a regenerative Ho:YLF amplifier—
several hundred meters of optical path—that will complicate
the synchronization between the Ti:sapphire laser and the
Ho:YLF laser. To this end, a high-energy source around
2.05 μm deriving from the Ti:sapphire laser is needed to seed
the Ho:YLF laser.

A 2.05 μm laser source with 2 mJ pulse energy has been
experimentally demonstrated via traditional OPA [31].
However, the bandwidth from such an OPA is huge compared
with the narrow bandwidth of Ho:YLF gain spectrum [32];
thus, the usable energy from the OPA for seeding the
Ho:YLF laser would be small. DC-OPA has been first theoreti-
cally analyzed [33] and then experimentally demonstrated to
generate broadband and tunable wavelength laser sources
[18–20,34–36]. Here, in this paper, we designed and experi-
mentally demonstrated the efficient generation of narrowband
2.05 μm pulses pumped with a broadband Ti:sapphire laser via
DC-OPA. With 1 mJ Ti:sapphire laser pulses, 82 μJ narrow-
band 2.05 μm pulses were achieved. The bandwidth and center
wavelength can be conveniently tuned around 2.05 μm
without losing efficiency to accommodate the gain bandwidth
from any Ho:YLF laser [32,37,38].
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2. PRINCIPLE OF GENERATING NARROW
BANDWIDTH VIA DC-OPA

If there are two input waves in an OPA, the phase of a third
output wave will be determined by the phases of the two input
waves, thus satisfying the following phase relationship:

ϕ�ωp� − ϕ�ωs� − ϕ�ωi� � −π∕2; (1)

in which ω0 is the central angular frequency, and the subscripts
p, s, and i refer to the pump, signal, and idler, respectively. If
both the pump and the signal are linearly chirped in a
DC-OPA,

ωp;s�t� � ωp0;s0 � βp;s t ; (2)

where β refers to the chirp parameters. By the law of
conservation of energy,

ωi�t� � ωp�t� − ωs�t� � ωp0 − ωs0 � �βp − βs�t: (3)

According to Eq. (3), the chirp of the generated idler is equal
to the difference between the pump chirp and the signal chirp.
The principle of DC-OPA for generating the narrowband
2.05 μm pulses pumped by broadband Ti:sapphire laser pulses
is illustrated in Fig. 1(a). When the broadband pump and the
broadband signal have an equal amount of chirp, the frequency
difference of all phase-matched pump-signal pairs is a constant
and thus generates a single-wavelength idler. This idea has been
already proposed and discussed in Refs. [20,33] and has been
experimentally demonstrated in Ref. [35]; in the mid-IR
region, realization of this scheme is not trivial because it de-
pends on the available phase matching of nonlinear crystals.
We found that the narrowband 2.05 μm source can be gener-
ated in phase-matching-tailored BBO, as shown in Fig. 1(b).
All the pump spectrum (0.76–0.82 μm) and signal spectrum
(1.2–1.4 μm) can phase match to generate the idler spectrum
around 2.05 μm.

3. SIMULATION RESULTS ON GENERATING
NARROW BANDWIDTH VIA DC-OPA

The DC-OPA was simulated using a 1D three-wave mixing
numerical model [39] with the following assumptions:
(1) the model includes the effects of dispersion; (2) all three
waves are collinear and assumed to be plane waves; (3) the
gain medium is lossless. The model solves standard coupled
differential equations under the slowly varying envelope
approximation [40]:
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where A1;2;3 are the complex field amplitudes of the signal,
idler, and pump waves, respectively, d eff is the effective second-
order nonlinearity, ωi is the angular frequency, ki is the wave
vector,Δk is the wave vector mismatch, c is the speed of light in
vacuum, and z is the propagation direction of all three waves.
The amplitude and phase of the pump, signal, and idler
pulses Ai are represented in the time domain and frequency
domain using Fourier transform: Ai � Ai�t� � F −1�Ai�ω��.
The coupled differential equations for the three fields are
integrated in the time domain. The dispersion of all three fields
are added in the spectral domain using the split-step approach
[41] after Fourier transforming the fields into the spectral
domain after numerical integration of each step in the time
domain. The spectral phase applied to the three fields at each
step is

Ai�ω� → Ai�ω� exp�jni�ω�ωdz∕c�; (7)

where n�ω� is the refractive index of the nonlinear medium for
the angular frequency ω of wave Ai.

In the simulation, the BBO crystal is 10 mm thick and has a
type I configuration with a phase-matching angle of 20.0°. The
input pump spectrum spans from 0.75 to 0.85 μm, and the
input signal spectrum spans from 1.2 to 1.4 μm, as shown
in Fig. 2(a). The input pump and signal intensities are
9 GW∕cm2 and 1 mW∕cm2, respectively. The pump and
the signal have a similar input chirp. To study the effects of

Fig. 1. (a) Illustration of generation of narrowband idler from
broadband pump and signal with an equal linear chirp. (b) Normalized
phase-matching efficiency of a 10 mm type I (phase-matching
angle: 20°) BBO. Δk is the propagation constant difference, and L
is the ZGP crystal length.

Fig. 2. (a) Input pump (blue) and signal (red) spectra. (b) Input
pump (blue) and signal (red) pulse shapes in the case of an initial pump
and signal chirp of 10000 fs2. (c) Output idler spectra under different
pump and signal chirps. (d) Output idler pulse shapes in the case of an
initial pump and signal chirp of 10000 fs2 (blue) and transform lim-
ited idler pulse shape (red).
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pump and signal chirps on the output idler bandwidth, five
cases of chirps are considered: 2000, 5000, 10000, and
50000 fs2. The input pump and signal pulse shapes in the case
of 10000 fs2 are shown in Fig. 2(b).

The simulation results for generating the 2.05 μm narrow-
band idler in DC-OPA is shown in Figs. 2(c) and 2(d).
Figure 2(c) shows the output idler spectra under four different
initial pump and signal chirps. It can be seen that the larger the
input pump and signal chirps, the narrower the idler band-
width. As shown in Fig. 2(d), the output idler’s pulse duration
is close to its transform-limited (TL) pulse duration, which is
representative of all four cases. It is understandable that a larger
pump and signal input chirp will lead to a narrower idler band-
width because a longer idler pulse close to the transform limit
always has a narrower spectrum bandwidth. The theoretical
pump to idler conversion efficiency is around 20%, which
results in a signal gain of 1.8 × 106.

4. EXPERIMENTAL RESULTS

The schematic DC-OPA setup is depicted in Fig. 3. The DC-
OPA is pumped by a homemade 14-pass Ti:sapphire chirped-
pulse amplification system, which produces 30 fs, up to 4 mJ
pulses centered at 790 nm at 1 kHz repetition rate. In the
experiment, the Ti:sapphire laser pulse energy of 1 mJ is used
for the DC-OPA, which is split into two portions. A 5% por-
tion of the 1 mJ beam passes through a neutral density filter and
an iris diaphragm and is then focused onto a 3 mm thick
sapphire plate to generate a stable single-filament continuum,
which is the signal for seeding the DC-OPA. The signal is col-
limated by a lens and then passes through a 20.6 mm thick
ZnSe plate with a positive dispersion of 10055 fs2 at 1.28 μm.
The 95% of the 1 mJ Ti:sapphire laser is the pump, which
passes through a 45 mm thick SF57 plate with the same pos-
itive dispersion of 10055 fs2 at 0.79 μm. A half-wave plate is
inserted into the pump beam line to maintain orthogonal
polarization between the pump and signal for Type I phase
matching. A delay line allows the temporal overlap between
the pump and the signal. A telescope is used to change the
pump beam size on the BBO crystal. The BBO thickness is
15 mm with a type I phase-matching angle of 20°. A silicon
plate is used to separate the signal and idler beams from the
pump beam, and a 1.6 μm long-pass filter transmits the idler
beam and blocks the signal beam.

It was confirmed by the numerical simulations that any
chirp difference between the pump and the signal would widen
the idler bandwidth. Thus, it is critical to maintain the same
chirp rate between the pump and the signal. Even if the pump
and seed pulse are chirped under the same GDD value, the
chirp rates can be much different if their TL pulse durations
are different. The TL pulse duration of the input pump

spectrum is about 20 fs. The seed spectrum for the input signal
is difficult to estimate from the entire broad seed spectrum gen-
erated by the white light generation (WLG), because only a
small portion of the WLG spectrum is used in DC-OPA.
However, the input signal spectrum can be roughly represented
by the output signal spectrum, of which TL pulse duration is
about 22 fs. Even though the TL pulse durations of the input
pump and signal are close, many other optical components in
the DC-OPA setup can give a different chirp rate. To fine-tune
the chirp rate in the experiment, we fixed the ZnSe plate and
slightly tilted the angle of the SF57 plate. At the same time, we
monitored the idler bandwidth measured from the optical spec-
trum analyzer to find the narrowest idler bandwidth.

The experimental results are shown in Fig. 4. It can be seen
that the signal and the idler spectrum bandwidths are close to
the simulation results. The idler center wavelength can be easily
tuned around 2.05 μm by changing the delay between the sig-
nal and the pump without any obvious decrease in efficiency,
which is quite convenient to accommodate the gain spectrum
from any Ho:YLF laser amplifier. The idler energy is around
82 μJ with an RMS single-shot stability of 1.5%, as shown
in Fig. 5, while the pump single-shot stability is around
1%. The 2.05 μm near-field beam profile is shown in the
inset picture in Fig. 5. The angular dispersion for the idler

Fig. 3. Schematic setup of DC-OPA.

Fig. 4. (a) Input pump spectrum. (b) Output signal spectrum.
(c) Measured output idler spectrum (solid red line) and simulated
output idler spectrum (dotted black line).

Fig. 5. Energy stability and beam profile (inset figure) of the idler.
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was eliminated by using a collinear configuration between the
pump and the signal. We are not concerned about the idler
pulse duration because the idler will be used primarily for seed-
ing an Ho:YLF laser. According to the simulations, the idler
pulse duration is estimated to be around 1 ps. This high-energy,
narrowband 2.05 μm pulse can be amplified to tens of mJ in a
chirped-pulse Ho:YLF multipass amplifier.

5. CONCLUSION

We designed a DC-OPA using BBO crystal as the nonlinear
media for generating narrowband 2.05 μm pulses, which are
pumped by broadband Ti:sapphire laser pulses. We have
experimentally generated 82 μJ narrowband 2.05 μm pulses
with 1 mJ pump. The idler center wavelength can be easily
tuned around 2.05 μm to accommodate the gain spectrum
of any Ho:YLF laser amplifier by changing the delay between
the signal and the pump. The bandwidth can be tuned by
changing the input chirp of pump and signal. The high-energy
narrowband 2.05 μm pulse will be an ideal source for seeding a
Ho:YLF multipass amplifier, which allows easy synchronization
when a Ti:sapphire laser and a Ho:YLF laser are needed for
developing mid-IR laser pulses.
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