• Journal of Inorganic Materials
  • Vol. 34, Issue 3, 247 (2019)
Jun LUO1、2, Shi-Yang HE1, Zhi-Li LI1, Yong-Bo LI1, Feng WANG1, Ji-Ye ZHANG1, [in Chinese]1、2, [in Chinese]1, [in Chinese]1, [in Chinese]1, [in Chinese]1, and [in Chinese]1
Author Affiliations
  • 11. School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
  • 22. Materials Genome Institute, Shanghai University, Shanghai 200444, China
  • show less
    DOI: 10.15541/jim20180335 Cite this Article
    Jun LUO, Shi-Yang HE, Zhi-Li LI, Yong-Bo LI, Feng WANG, Ji-Ye ZHANG, [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Progress on High-throughput Synthesis and Characterization Methods for Thermoelectric Materials[J]. Journal of Inorganic Materials, 2019, 34(3): 247 Copy Citation Text show less
    References

    [1] ANDREA WIDENER. Materials genome initiative. Chem. Eng. News, 91, 25-27(2013).

    [2] C ELBERT KATHERINE, D F ADLER PHILIP, PAUL RACCUGLIA et al. Machine-learning-assisted materials discovery using failed experiments. Nature, 533, 73-75(2016).

    [3] RENKUN CHEN, DIAZ DELGADO RAUL, I HOCHBAUM ALLON et al. Enhanced thermoelectric performance of rough silicon nanowires. Nature, 451, 163-165(2008).

    [4] LI YOU, XIN LI, YE-FENG LIU et al. Boosting the thermoelectric performance of PbSe through dynamic doping and hierarchical phonon scattering. Energy Environ. Sci., 11, 1848-1858(2018).

    [5] TIE-JUN ZHU, YIN-TU LIU, CHEN-GUANG FU et al. Compromise and synergy in high-efficiency thermoelectric materials. Adv. Mater., 29, 1605884-1-26(2017).

    [6] YU PAN, UMUT AYDEMIR, A GROVOGUI JANN et al. Melt-centrifuged (Bi,Sb)2Te3: engineering microstructure toward high thermoelectric efficiency. Adv. Mater., 30, 1802016-1-7(2018).

    [7] KAI XIAO, CUI YU, TIE-JUN ZHU et al. Microstructure of ZrNiSn-base half-Heusler thermoelectric materials prepared by melt-spinning.. Inorg. Mater., 25, 569-572(2010).

    [8] KAI-YANG XIA, YIN-TU LIU, CHEN-GUANG FU et al. Lanthanide contraction as a design factor for high-performance half-Heusler thermoelectric materials. Adv. Mater., 30, 1800881-1-7(2018).

    [9] PENG-FEI QIU, ZHENG YAO, XIAO-YA LI et al. Investigation on quick fabrication of n-type filled Skutterudites.. Inorg. Mater., 31, 1375-1382(2016).

    [10] RUI-HENG LIU, NIAN CHENG, JIA-WEI ZHANG et al. High- performance pseudocubic thermoelectric materials from non-cubic chalcopyrite compounds. Adv. Mater., 26, 3848-3853(2014).

    [11] RANITA BASU, SHOVIT BHATTACHARYA, RANU BHATT et al. Enhanced thermoelectric properties of selenium-deficient layered TiSe2-x: a charge-density-wave material. ACS Appl. Mater. Interfaces, 6, 18619-18625(2014).

    [12] LI-DONG ZHAO, P DRAVID VINAYAK, G KANATZIDIS MERCOURI. The panoscopic approach to high performance thermoelectrics. Energy Environ. Sci., 7, 251-268(2014).

    [13] YAN-ZHONG PEI, LALONDE AARON, A HEINZ NICHOLAS et al. Combination of large nanostructures and complex band structure for high performance thermoelectric lead telluride. Energy Environ. Sci., 4, 3640-3645(2011).

    [14] W WONG-NG, J MARTIN, G YAN Y et al. A temperature dependent screening tool for high throughput thermoelectric characterization of combinatorial films. Rev. Sci. Instrum., 84, 115110-1-7(2013).

    [15] GABRIEL BRICEÑO, XIAO-DONG XIANG, XIAO-DONG SUN et al. A combinatorial approach to materials discovery. Science, 268, 1738-1740(1995).

    [16] T KATO, K FUJIMOTO, S ITO et al. Development and application of combinatorial electrostatic atomization system “M-ist Combi”: high-throughput preparation of electrode materials. Solid State Ionics, 177, 2639-2642(2006).

    [17] YOSHIDA SHOGO, KENJIRO FUJIMOTO, TORU TAGUCHI et al. Design of Seebeck coefficient measurement probe for powder library. ACS Comb. Sci., 16, 66-70(2014).

    [18] J HEDEGAARD ELLEN M, LASSE BJERG, SIMON JOHNSEN et al. Functionally graded Ge1-xSix thermoelectrics by simultaneous band gap and carrier density engineering. Chem. Mater., 26, 4992-4997(2014).

    [19] PETER CAPPER, SAFA KASAP. Springer Handbook of Electronic and Photonic Materials. Inc., 236(2006).

    [20] J HEDEGAARD ELLEN M, H MAMAKHEL AREF A, HAZEL REARDON et al. Functionally graded (PbTe)1-x(SnTe)x thermoelectrics. Chem. Mater., 30, 280-287(2018).

    [21] I SHIOTA, A NISHIDA I, H KOHRI. Improvement of thermoelectric properties for n-type PbTe by adding Ge. Mater. Sci. Forum, 423-425, 381-384(2003).

    [22] A PELUSO LOUIS, R JACKSON MELVIN, CHENG ZHAO JI et al. A diffusion multiple approach for the accelerated design of structural materials. MRS Bull., 27, 324-329(2002).

    [23] Y GELBSTEIN, Z DASHEVSKY, P DARIEL M. Powder metallurgical processing of functionally graded p-Pb1-xSnxTe materials for thermoelectric applications. Phys. B, 391, 256-265(2007).

    [24] EDEN HAZAN, NAOR MADAR, BEN-YEHUDA OHAD et al. Functional graded germanium-lead chalcogenide-based thermoelectric module for renewable energy applications. Adv. Energy Mater., 5, 1500272-1-8(2015).

    [25] YUDAI OGATA, KAMILA JANUSZKO, ARTUR STABRAWA et al. Influence of sedimentation of atoms on structural and thermoelectric properties of Bi-Sb alloys.. Electron. Mater., 45, 1947-1955(2016).

    [26] MATTHIAS WAMBACH, ALFRED LUDWIG, PAWEL ZIOLKOWSKI et al. Application of high-throughput Seebeck microprobe measurements on thermoelectric half-Heusler thin film combinatorial material libraries. ACS Comb. Sci., 20, 1-18(2018).

    [27] ROBIN STERN, MATTHIAS WAMBACH, SANDIP BHATTACHARYA et al. Unraveling self-doping effects in thermoelectric TiNiSn half-Heusler compounds by combined theory and high-throughput experiments. Adv. Electron. Mater., 2, 1500208-1-9(2016).

    [28] XIAO-DONG XIANG. High throughput synthesis and screening for functional materials. Appl. Surf. Sci., 223, 54-61(2004).

    [29] JI-CHENG ZHAO, XUAN ZHENG, G CAHILLBDAVID. Thermal conductivity mapping of the Ni-Al system and the beta-NiAl phase in the Ni-Al-Cr system. Scripta Mater., 66, 935-938(2012).

    [30] SAMUELS MAO. High throughput growth and characterization of thin film materials. J. Cryst. Growth, 379, 123-130(2013).

    [31] GILLES PERNOT, HÉLÈNE MICHEL, BJORN VERMEERSCH et al. 1347:. Mater. Res. Soc. Symp. Proc.(2011).

    [32] A PADDOCK CAROLYN, L EESLEY GARY. Transient thermoreflectance from thin metal films.. Appl. Phys., 60, 285-290(1986).

    [33] B ABADA, D A BORCA-TASCIUC, M S MARTIN-GONZALEZA. Non-contact methods for thermal properties measurement. Renew. Sust. Energ. Rev., 76, 1348-1370(2017).

    [34] J VLASSAK JOOST, J MCCLUSKEY PATRICK. Combinatorial nanocalorimetry.. Mater. Res., 25, 2086-2100(2010).

    [35] M GREGOIREJOHN, J MCCLUSKEYPATRICK, et al. Combining combinatorial nanocalorimetry and X-ray diffraction techniques to study the effects of composition and quench rate on Au-Cu-Si metallic glasses. Scripta Mater., 66, 178-181(2012).

    [36] M TRITT TERRY. Thermal Conductivity: Theory, Properties, and Applications. New York: Kluwer Academic/Plenum Publishers, 225-231(2004).

    [37] L EESLEY G. Observation of nonequilibrium electron heating in copper. Phys. Rev. Lett., 51, 2140-2143(1983).

    [38] A SHAKOURI, T FAVALORO, H BAHK J. Characterization of the temperature dependence of the thermoreflectance coefficient for conductive thin films. Rev. Sci. Instrum., 86, 024903-1-9(2015).

    [39] BEGOÑA ABAD, V MANZANO CRISTINA, ROJO MUÑOZ MIGUEL et al. Anisotropic effects on the thermoelectric properties of highly oriented electrodeposited Bi2Te3 films. Sci. Rep., 6, 19129-1-8(2016).

    [40] SCOTT HUXTABLE, VINCENT FAUCONNIER, G CAHILL DAVID et al. Thermal conductivity imaging at micrometre-scale resolution for combinatorial studies of materials. Nat. Mater., 3, 298-301(2004).

    [41] SUGURU YAMAMOTO, OKAWA MORI, TSUYOSHI NISHI et al. Thermal microscope measurement of thermal effusivity distribution in compositionally graded PbTe-Sb2Te3-Ag2Te alloy system. Thermochim. Acta, 659, 39-43(2018).

    [42] GRZEGORZ WIELGOSZEWSKI, TEODOR GOTSZALKA. Scanning thermal microscopy (SThM): how to map temperature and thermal properties at the nanoscale. Adv. Imag. Electron Phys., 190, 177-221(2015).

    [43] STÉPHANE GRAUBY, JEAN-MICHEL RAMPNOUX, ETIENNE PUYOO et al. Si and SiGe nanowires: fabrication process and thermal conductivity measurement by 3ω-scanning thermal microscopy. J. Phys. Chem. C, 117, 9025-9034(2013).

    [44] W KENNY THOMAS, P KING WILLIAM. Design of atomic force microscope cantilevers for combined thermomechanical writing and thermal reading in array operation. J. Microelectromech. S., 11, 765-774(2002).

    [45] SHAN-YU WANG, NASR ESFAHANI EHSAN, FEI-YUE MA et al. Quantitative nanoscale mapping of three-phase thermal conductivities in filled skutterudites via scanning thermal microscopy. Natl. Sci. Rev., 5, 59-69(2018).

    [46] O CABALLERO-CALERO, L VERA-LONDONO, J ANDRES PEREZ-TABORDA et al. High thermoelectric zT in n-type silver selenide films at room temperature. Adv. Energy Mater., 8, 1870033-1-8(2018).

    [47] FERHAT MARHOUN, NAGAO JIRO. Thermoelectric and transport properties of β-Ag2Se compounds.. Appl. Phys., 88, 813-816(2000).

    [48] P ZIOLKOWSKI, I HUNG C, H WU K et al. Improvement of spatial resolution for local Seebeck coefficient measurements by deconvolution algorithm. Rev. Sci. Instrum., 80, 105104-1-8(2009).

    [49] WEI-HANG WANG, XU YAO, AI-JUN ZHOU et al. Impact of the film thickness and substrate on the thermopower measurement of thermoelectric films by the potential-Seebeck microprobe (PSM). Appl. Therm. Eng., 107, 552-559(2016).

    [50] JIAN-LI MI, MARCO BIANCHI, MARTIN BREMHOLM et al. Phase separation and bulk p-n transition in single crystals of Bi2Te2Se topological insulator. Adv. Mater., 25, 889-893(2013).

    [51] C STIEWEP, J DE BOOR, P ZIOLKOWSKI et al. High-temperature measurement of Seebeck coefficient and electrical conductivity.. Electron. Mater., 42, 1711-1718(2013).

    [52] Z YU H, Q XU K, R ZENG H et al. Ultrahigh resolution characterizing nanoscale Seebeck coefficient via the heated, conductive AFM probe. Appl. Phys. A, 118, 57-61(2015).

    Jun LUO, Shi-Yang HE, Zhi-Li LI, Yong-Bo LI, Feng WANG, Ji-Ye ZHANG, [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Progress on High-throughput Synthesis and Characterization Methods for Thermoelectric Materials[J]. Journal of Inorganic Materials, 2019, 34(3): 247
    Download Citation