• Opto-Electronic Advances
  • Vol. 1, Issue 6, 180010-1 (2018)
Fanfan Lu1, Wending Zhang1、*, Ligang Huang2, Shuhai Liang1, Dong Mao1, Feng Gao3, Ting Mei1, and Jianlin Zhao1
Author Affiliations
  • 1MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions and Shaanxi Key Laboratory of Optical Information Technology, School of Science, Northwestern Polytechnical University, Xi'an 710072, China
  • 2Key Laboratory of Optoelectronic Technology and Systems (Ministry of Education), Chongqing University, Chongqing 400044, China
  • 3MOE Key Laboratory of Weak-Light Nonlinear Photonics, TEDA Applied Physics Institute and School of Physics, Nankai University, Tianjin 300457, China
  • show less
    DOI: 10.29026/oea.2018.180010 Cite this Article
    Fanfan Lu, Wending Zhang, Ligang Huang, Shuhai Liang, Dong Mao, Feng Gao, Ting Mei, Jianlin Zhao. Mode evolution and nanofocusing of grating-coupled surface plasmon polaritons on metallic tip[J]. Opto-Electronic Advances, 2018, 1(6): 180010-1 Copy Citation Text show less

    Abstract

    We present a detailed analysis on mode evolution of grating-coupled surface plasmonic polaritons (SPPs) on a conical metal tip based on the guided-wave theory. The eigenvalue equations for SPPs modes are discussed, revealing that cylindrical metal waveguides only support TM01 and HEm1 surface modes. During propagation on the metal tip, the grating-coupled SPPs are converted to HE31, HE21, HE11 and TM01 successively, and these modes are sequentially cut off except TM01. The TM01 mode further propagates with drastically increasing effective mode index and is converted to localized surface plasmons (LSPs) at the tip apex, which is responsible for plasmonic nanofocusing. The gap-mode plasmons can be excited with the focusing TM01 mode by approaching a metal substrate to the tip apex, resulting in further enhanced electric field and reduced size of the plasmonic focus.
    $ \frac{{{I_1}({\chi _1}R)}}{{{I_0}({\chi _1}R)}}\frac{{{\varepsilon _{{\rm{Ag}}}}}}{{{\chi _1}}} = - \frac{{{K_1}({\chi _2}R)}}{{{K_0}({\chi _2}R)}}\frac{{{\varepsilon _{\rm{d}}}}}{{{\chi _{\rm{d}}}}} $ (1)

    View in Article

    $ \begin{array}{l} S{\rm{ = }}\frac{1}{2}\left( {1{\rm{ + }}\frac{{{\varepsilon _{\rm{d}}}}}{{{\varepsilon _{{\rm{Ag}}}}}}} \right)T - \frac{1}{2}\left\{ {{{\left( {1 + \frac{{{\varepsilon _{\rm{d}}}}}{{{\varepsilon _{{\rm{Ag}}}}}}} \right)}^2}{T^2}} \right.\\ {\left. { - 4\left[ {\frac{{{\varepsilon _{\rm{d}}}}}{{{\varepsilon _{{\rm{Ag}}}}}}{T^2} - {m^2}\left( {\frac{1}{{W_1^2}}{\rm{ + }}\frac{1}{{W_2^2}}} \right)\left( {\frac{1}{{W_1^2}}{\rm{ + }}\frac{{{\varepsilon _{\rm{d}}}}}{{{\varepsilon _{{\rm{Ag}}}}}}\frac{1}{{W_2^2}}} \right)} \right]} \right\}^{\frac{1}{2}}}, \end{array} $ (2)

    View in Article

    $ \begin{array}{l} S = (1/{W_1}){{I'}_m}({W_1})/{I_m}({W_1}), \\ T = (1/{W_2}){{K'}_m}({W_2})/{K_m}({W_2}), \\ {W_1} = {\chi _1}R, \\ {W_2} = {\chi _2}R. \end{array} $ ()

    View in Article

    Fanfan Lu, Wending Zhang, Ligang Huang, Shuhai Liang, Dong Mao, Feng Gao, Ting Mei, Jianlin Zhao. Mode evolution and nanofocusing of grating-coupled surface plasmon polaritons on metallic tip[J]. Opto-Electronic Advances, 2018, 1(6): 180010-1
    Download Citation