• Laser & Optoelectronics Progress
  • Vol. 56, Issue 6, 060003 (2019)
Jie Fan*, Chunyang Gong, Jingjing Yang, Yonggang Zou, and Xiaohui Ma
Author Affiliations
  • State Key Laboratory of High Power Semiconductor Laser, Changchun University of Science and Technology, Changchun, Jilin 130022, China
  • show less
    DOI: 10.3788/LOP56.060003 Cite this Article Set citation alerts
    Jie Fan, Chunyang Gong, Jingjing Yang, Yonggang Zou, Xiaohui Ma. Research Progress of Distributed Bragg Reflector Semiconductor Lasers[J]. Laser & Optoelectronics Progress, 2019, 56(6): 060003 Copy Citation Text show less
    References

    [1] Li M Y, He J. Development situations of high power semiconductor laser for military applications in advanced countries[J]. Semiconductor Technology, 40, 321-327(2015).

    [2] Wang L J, Ning Y Q, Qin L et al. Development of high power diode laser[J]. Chinese Journal of Luminescence, 36, 1-19(2015).

    [3] Zhang J, Chen Y Y, Qin L et al. Advances in high power high beam quality diode lasers[J]. Chinese Science Bulletin, 62, 3719-3728(2017).

    [4] Kong Y X, Ke X Z, Yang Y. Bit error rate of laser linewidth in spatial coherent optical communication link[J]. Laser & Optoelectronics Progress, 55, 040603(2018).

    [5] Ma J Q. Influence of pump laser line width in frequency conversion[D]. Changsha: National University of Defense Technology(2010).

    [6] Gao P[J]. Tunable semiconductor lasers for optical communication systems Wireless Internet Technology, 2014, 37.

    [7] Pachnicke S, Zhu J N, Lawin M et al. Tunable WDM-PON system with centralized wavelength control[J]. Journal of Lightwave Technology, 34, 812-818(2016). http://www.opticsinfobase.org/jlt/abstract.cfm?uri=jlt-34-2-812

    [8] Wagner C, Eiselt M H, Lawin M et al. Impairment analysis of WDM-PON based on low-cost tunable lasers[J]. Journal of Lightwave Technology, 34, 5300-5307(2016). http://ieeexplore.ieee.org/document/7588994/

    [9] Diba A S, Xie F, Gross B et al. Application of a broadly tunable SG-DBR QCL for multi-species trace gas spectroscopy[J]. Optics Express, 23, 27123-27133(2015). http://www.opticsinfobase.org/abstract.cfm?uri=oe-23-21-27123

    [10] Sumpf B, Kabitzke J, Fricke J et al. Dual-wavelength diode laser with electrically adjustable wavelength distance at 785 nm[J]. Optics Letters, 41, 3694-3697(2016). http://www.onacademic.com/detail/journal_1000039486226010_0946.html

    [11] Maiwald M, Fricke J, Ginolas A et al. Monolithic Y-branch dual wavelength DBR diode laser at 671 nm for shifted excitation Raman difference spectroscopy. [C]∥2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC, May 12-16, 2013, Munich, Germany. New York: IEEE, 1(2013).

    [12] Li B, Tu P, Xu Y Y et al. Narrow linewidth diode laser with grating external cavity in 405 nm band[J]. Laser & Optoelectronics Progress, 52, 031404(2015).

    [13] Xiang J F, Wang L G, Li L et al. Automatic frequency stabilization system of external cavity diode laser based on digital signal processing technology[J]. Acta Optica Sinica, 37, 0914002(2017).

    [14] Nakamura M, Yariv A, Yen H W et al. Optically pumped GaAs surface laser with corrugation feedback[J]. Applied Physics Letters, 22, 515-516(1973). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4843696

    [15] Reinhart F K, Logan R A, Shank C V. GaAs-AlxGa1-x As injection lasers with distributed Bragg reflectors[J]. Applied Physics Letters, 27, 45-48(1975). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4845207

    [16] Shi J X, Qin L, Ye S J et al. A 927 nm distributed feedback laser with surface second-order metal grating[J]. Journal of Optoelectronics·Laser, 22, 1488-1491(2011).

    [17] Jia B S, Wang H, Li A M et al. Narrow linewidth 1064 nm distributed Bragg reflector semiconductor laser[J]. Chinese Journal of Lasers, 45, 0501006(2018).

    [18] Du J Y, Li H, Qu Y et al. Design of distributed Bragg grating in 1064 nm narrow linewidth DBR lasers. [C]∥2015 International Conference on Optoelectronics and Microelectronics (ICOM), July 16-18, 2015, Changchun, China. New York: IEEE, 348-350(2015).

    [19] Hu C, Wang X P, You C et al. Application of high resolution electron beam lithography technology in micro- and nano-fabrication[J]. Electronics & Packaging, 17, 28-32, 36(2017).

    [20] Cui K Y, Li Y Z, Feng X et al. Fabrication of high-aspect-ratio double-slot photonic crystal waveguide in InP heterostructure by inductively coupled plasma etching using ultra-low pressure[J]. AIP Advances, 3, 022122(2013). http://scitation.aip.org/content/aip/journal/adva/3/2/10.1063/1.4793082

    [21] Hou L P, Haji M, Dylewicz R et al. Monolithic 45-GHz mode-locked surface-etched DBR laser using quantum-well intermixing technology[J]. IEEE Photonics Technology Letters, 22, 1039-1041(2010). http://ieeexplore.ieee.org/document/5460947/

    [22] Guziy O, Grzanka S, Leszczyński M et al. Electronic tuning of integrated blue-violet GaN tunable coupled-cavity laser[J]. AIP Advances, 2, 032130(2012). http://scitation.aip.org/content/aip/journal/adva/2/3/10.1063/1.4742971

    [23] Buus J, Amann M C, Blumenthal D J. Tunablelaser diodes and related optical sources[M]. New York: John Wiley & Sons Inc, 221-245(2005).

    [24] Spießberger S, Schiemangk M, Wicht A et al. DBR laser diodes emitting near 1064 nm with a narrow intrinsic linewidth of 2 kHz[J]. Applied Physics B, 104, 813-818(2011). http://link.springer.com/article/10.1007/s00340-011-4644-7

    [25] Feise D, John W, Bugge F et al. 96 mW longitudinal single mode red-emitting distributed Bragg reflector ridge waveguide laser with tenth order surface gratings[J]. Optics Letters, 37, 1532-1534(2012). http://www.opticsinfobase.org/abstract.cfm?URI=ol-37-9-1532

    [26] Blume G, Schiemangk M, Pohl J et al. Narrow linewidth of 633-nm DBR ridge-waveguide lasers[J]. IEEE Photonics Technology Letters, 25, 550-552(2013). http://ieeexplore.ieee.org/document/6425406/

    [27] Feise D, Blume G, Pohl J et al. Sub-MHz linewidth of 633 nm diode lasers with internal surface DBR gratings[J]. Proceedings of SPIE, 8640, 86400A(2013). http://spie.org/x648.html?product_id=2002474

    [28] Paschke K, Bugge F, Blume G et al. Watt-level continuous-wave diode lasers at 1180 nm with InGaAs quantum wells[J]. Proceedings of SPIE, 8965, 896509(2014). http://www.spie.org/x648.xml?product_id=2037752

    [29] Virtanen H, Aho A T, Viheriälä J et al. Spectral characteristics of narrow-linewidth high-power 1180 nm DBR laser with surface gratings[J]. IEEE Photonics Technology Letters, 29, 114-117(2017). http://ieeexplore.ieee.org/document/7745978/

    [30] Viheriälä J, Aho A T, Virtanen H et al. 1180 nm GaInNAs quantum well based high power DBR laser diodes[J]. Proceedings of SPIE, 10086, 100860K(2017). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=2607369

    [31] Paoletti R, Codato S, Coriasso C et al. Wavelength stabilized DBR high power diode laser using EBL optical confining grating technology[J]. Proceedings of SPIE, 10514, 105140V(2018). http://adsabs.harvard.edu/abs/2018SPIE10514E..0VP

    [32] Lu Q Y, Guo W H, Byrne D et al. Design of slotted single-mode lasers suitable for photonic integration[J]. IEEE Photonics Technology Letters, 22, 787-789(2010). http://ieeexplore.ieee.org/document/5437332/

    [33] Abdullaev A, Lu Q Y, Guo W H et al. Linewidth characterization of integrable slotted single-mode lasers[J]. IEEE Photonics Technology Letters, 26, 2225-2228(2014). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6882129

    [34] Fricke J, Bugge F, Ginolas A et al. High-power 980-nm broad-area lasers spectrally stabilized by surface Bragg gratings[J]. IEEE Photonics Technology Letters, 22, 284-286(2010). http://ieeexplore.ieee.org/document/5378590/

    [35] Chen C, Zhao L J, Qiu J F et al. Dual-wavelength distributed Bragg reflector semiconductor laser based on a composite resonant cavity[J]. Chinese Physics B, 21, 094208(2012). http://www.cqvip.com/QK/85823X/201209/43125811.html

    [36] Jia P, Liu X L, Chen Y Y et al. Study of dual-wavelength distributed Bragg reflection semiconductor laser with high order Bragg gratings[J]. Chinese Journal of Lasers, 42, 0802007(2015).

    [37] Yu L Q, Zhao L J, Lu D et al. A novel four-section DBR tunable laser with dual-wavelength lasing[J]. Proceedings of SPIE, 8552, 85520T(2012). http://spie.org/Publications/Proceedings/Paper/10.1117/12.999440

    [38] Maiwald M, Fricke J, Ginolas A et al. Dual-wavelength monolithic Y-branch distributed Bragg reflection diode laser at 671 nm suitable for shifted excitation Raman difference spectroscopy[J]. Laser & Photonics Reviews, 7, L30-L33(2013). http://onlinelibrary.wiley.com/doi/10.1002/lpor.201300041/full

    [39] Maiwald M, Eppich B, Fricke J et al. Dual-wavelength Y-branch distributed Bragg reflector diode laser at 785 nanometers for shifted excitation Raman difference spectroscopy[J]. Applied Spectroscopy, 68, 838-843(2014). http://www.ncbi.nlm.nih.gov/pubmed/25061785

    [40] Sumpf B, Maiwald M, Klehr A et al. 785-nm dual wavelength DBR diode lasers and MOPA systems with output powers up to 750 mW[J]. Proceedings of SPIE, 9382, 93821B(2015). http://www.spie.org/x648.xml?product_id=2076259

    [41] Sumpf B, Maiwald M, Müller A et al. Comparison of two concepts for dual-wavelength DBR ridge waveguide diode lasers at 785 nm suitable for shifted excitation Raman difference spectroscopy[J]. Applied Physics B, 120, 261-269(2015). http://link.springer.com/article/10.1007/s00340-015-6133-x

    [42] Sumpf B, Kabitzke J, Fricke J et al. 785 nm dual-wavelength Y-branch DBR-RW diode laser with electrically adjustable wavelength distance between 0 nm and 2 nm[J]. Proceedings of SPIE, 10123, 101230T(2017). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=2606262

    [43] Kyritsis G, Zakhleniuk N. Self-consistent simulation model and enhancement of wavelength tuning of InGaAsP/InP multisection DBR laser diodes[J]. IEEE Journal of Selected Topics in Quantum Electronics, 19, 1053311(2013). http://ieeexplore.ieee.org/document/6509441/

    [44] Yu L Q, Wang H T, Lu D et al. A widely tunable directly modulated DBR laser with high linearity[J]. IEEE Photonics Journal, 6, 1501308(2014). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6838951

    [45] Han L S, Liang S, Zhang C et al. Fabrication of widely tunable ridge waveguide DBR lasers for WDM-PON[J]. Chinese Optics Letters, 12, 091402(2014). http://www.opticsjournal.net/Articles/Abstract?aid=OJ1408210000205A8D0G

    [46] Yu L Q, Lu D, Pan B W et al. Widely tunable narrow-linewidth lasers using self-injection DBR lasers[J]. IEEE Photonics Technology Letters, 27, 50-53(2015). http://ieeexplore.ieee.org/document/6918488/

    [47] Zhou D B, Liang S, Han L S et al. Widely tunable two-section directly modulated DBR lasers for TWDM-PON system[J]. Chinese Physics Letters, 34, 034204(2017). http://www.cqvip.com/QK/84212X/201703/671579827.html

    [48] Li J, Kuksenkov D V, Liu W et al. Wavelength tunable high-power single-mode 1060-nm DBR lasers[J]. Proceedings of SPIE, 8277, 82771L(2012). http://spie.org/Publications/Proceedings/Paper/10.1117/12.907112

    [49] Coldren L A. Monolithic tunable diode lasers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 6, 988-999(2000).

    [50] Ishii H, Tanobe H, Kano F et al. Broad-range wavelength coverage (62.4 nm) with superstructure-grating DBR laser[J]. Electronics Letters, 32, 454-455(1996). http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=491146

    [51] Jayaraman V, Mathur A, Coldren L A et al. Extended tuning range in sampled grating DBR lasers[J]. IEEE Photonics Technology Letters, 5, 489-491(1993). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=215257

    [52] Lee S L, Tauber D A, Jayaraman V et al. Dynamic responses of widely tunable sampled grating DBR lasers[J]. IEEE Photonics Technology Letters, 8, 1597-1599(1996). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=544689

    [53] Simsarian J E, Larson M C, Garrett H E et al. Less than 5-ns wavelength switching with an SG-DBR laser[J]. IEEE Photonics Technology Letters, 18, 565-567(2006). http://ieeexplore.ieee.org/document/1583676

    [54] Tawfieq M, Wenzel H, Brox O et al. Concept and numerical simulations of a widely tunable GaAs-based sampled-grating diode laser emitting at 976 nm[J]. IET Optoelectronics, 11, 73-78(2017). http://ieeexplore.ieee.org/document/7876993/

    [55] Brox O, Tawfieq M, Della Casa P et al. Realisation of a widely tunable sampled grating DBR laser emitting around 970 nm[J]. Electronics Letters, 53, 749-750(2017). http://ieeexplore.ieee.org/document/7933193

    [56] Ishii H, Tohmori Y, Tamamura T et al. Super-structure-grating (SSG) for broadly tunable DBR lasers[J]. IEEE Photonics Technology Letters, 5, 393-395(1993). http://ieeexplore.ieee.org/iel3/68/5556/00212675.pdf

    [57] Gotoda M, Nishimura T, Tokuda Y. Widely tunable SOA-integrated DBR laser with combination of sampled-grating and superstructure grating. [C]∥19th International Semiconductor Laser Conference, September 21-25, 2004, Matsue-shi, Japan. New York: IEEE, 147-148(2004).

    [58] Guo D K, Li J Y, Cheng L W et al. Widely tunable monolithic mid-infrared quantum cascade lasers using super-structure grating reflectors[J]. Photonics, 3, 3020025(2016).

    [59] Chen T, Qian Y J, Shi Y C et al. Widely tunable semiconductor laser based on step-chirped sampled Bragg grating. [C]∥14th International Conference on Optical Communications and Networks, July 3-5, 2015, Nanjing, China. New York: IEEE, 1-3(2015).

    [60] Aho A T, Viheriälä J, Korpijarvi V M et al. High-power 1180-nm GaInNAs DBR laser diodes[J]. IEEE Photonics Technology Letters, 29, 2023-2026(2017). http://ieeexplore.ieee.org/document/8060506/

    [61] Paschke K, Bugge F, Blume G et al. High-power diode lasers at 1178 nm with high beam quality and narrow spectra[J]. Optics Letters, 40, 100-102(2015). http://www.ncbi.nlm.nih.gov/pubmed/25531619

    [62] Müller A, Fricke J, Bugge F et al. DBR tapered diode laser at 1030 nm with nearly diffraction-limited narrowband emission and 12. 7 W of optical output power[J]. Proceedings of SPIE, 9796, 97671I(2016). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=2502306

    [63] Müller A, Zink C, Fricke J et al. 1030 nm DBR tapered diode laser with up to 16 W of optical output power[J]. Proceedings of SPIE, 10123, 101231B(2017). http://spie.org/Publications/Proceedings/Paper/10.1117/12.2251845

    [64] Müller A, Zink C, Ginolas A et al. 10. 5 W central lobe output power obtained with an efficient 1030 nm DBR tapered diode laser. [C]∥2017 IEEE High Power Diode Lasers and Systems Conference (HPD), October 11-12, 2017, Coventry, UK. New York: IEEE, 61-62(2017).

    [65] Müller A, Zink C, Fricke J et al. Comparison for 1030 nm DBR tapered diode lasers with 10 W central lobe output power and different grating layouts for wavelength stabilization and lateral spatial mode filtering[J]. Proceedings of SPIE, 10553, 105531G(2018).

    Jie Fan, Chunyang Gong, Jingjing Yang, Yonggang Zou, Xiaohui Ma. Research Progress of Distributed Bragg Reflector Semiconductor Lasers[J]. Laser & Optoelectronics Progress, 2019, 56(6): 060003
    Download Citation