• Laser & Optoelectronics Progress
  • Vol. 57, Issue 11, 111408 (2020)
Zhiquan Cui1 and Yingchun Guan1、2、3、4、*
Author Affiliations
  • 1School of Mechanical Engineering & Automation, Beihang University, Beijing 100191, China;
  • 2National Engineering Laboratory of Addictive Manufacturing for Large Metallic Components, Beihang University, Beijing 100191, China
  • 3International Research Institute for Multidiscipline Science, Beihang University, Beijing 100191, China
  • 4Hefei Innovation Research Institute of Beihang University, Hefei, Anhui 230013, China
  • show less
    DOI: 10.3788/LOP57.111408 Cite this Article Set citation alerts
    Zhiquan Cui, Yingchun Guan. Review of Numerical Models of Ultrafast Laser Processing[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111408 Copy Citation Text show less
    References

    [1] Hargrove L, Fork R L, Pollack M. Locking of He-Ne laser modes induced by synchronous intracavity modulation[J]. Applied Physics Letters, 5, 4-5(1964).

    [2] Fork R L. Brito Cruz C H, Becker P C, et al. Compression of optical pulses to six femtoseconds by using cubic phase compensation[J]. Optics Letters, 12, 483-485(1987).

    [3] Spence D, Kean P, Sibbett W. 60-fsec pulse generation from a self-mode-locked Ti∶sapphire laser[J]. Optics Letters, 16, 42-44(1991).

    [4] Squier J, Coe S, Clay K et al. An alexandrite pumped Nd∶glass regenerative amplifier for chirped pulse amplification[J]. Optics Communications, 92, 73-78(1992).

    [5] Srinivasan R, Sutcliffe E, Braren B. Ablation and etching of polymethylmethacrylate by very short (160 fs) ultraviolet (308 nm) laser pulses[J]. Applied Physics Letters, 51, 1285-1287(1987).

    [6] Zhang W G, Li Y Y, Dong X F et al. 19):, 172, 175(2019).

    [7] Yu Y C, Bai S, Wang S T et al. Ultra-short pulsed laser manufacturing and surface processing of microdevices[J]. Engineering, 4, 779-786(2018).

    [8] Sugioka K, Cheng Y. Ultrafast lasers: reliable tools for advanced materials processing[J]. Light: Science & Applications, 3, e149(2014).

    [9] Wei C, Ma Y P, Han Y et al. Femtosecond laser processing of ultrahard materials[J]. Laser & Optoelectronics Progress, 56, 190003(2019).

    [10] Hu G Q, Song Y, Guan Y C. Tailoring metallic surface properties induced by laser surface processing for industrial applications[J]. Nanotechnology and Precision Engineering, 2, 29-34(2019).

    [11] Cao L H, Chang W W, Yue Z W et al. Particle simulation of vacuum heating in plasmas produced by an ultrashort laser pulse[J]. Chinese Journal of Lasers, 24, 947-951(1997).

    [12] Du G Q, Wu Y M, Uddin N et al. Ultrafast thermal dynamics of nano-ripples formation via laser double pulses excitation[J]. Optics Communications, 375, 54-57(2016).

    [13] Du G Q, Yang Q, Chen F et al. Ultrafast dynamics of laser thermal excitation in gold film triggered by temporally shaped double pulses[J]. International Journal of Thermal Sciences, 90, 197-202(2015).

    [14] Jiang L, Tsai H L. Modeling of ultrashort laser pulse-train processing of metal thin films[J]. International Journal of Heat and Mass Transfer, 50, 3461-3470(2007).

    [15] Li X, Jiang L, Tsai H. Phase change mechanisms during femtosecond laser pulse train ablation of nickel thin films[J]. Journal of Applied Physics, 106, 064906(2009).

    [16] Wang J C, Guo C L. Numerical study of ultrafast dynamics of femtosecond laser-induced periodic surface structure formation on noble metals[J]. Journal of Applied Physics, 102, 053522(2007).

    [17] Hwang T Y, Vorobyev A Y, Guo C L. Ultrafast dynamics of femtosecond laser-induced nanostructure formation on metals[J]. Applied Physics Letters, 95, 123111(2009).

    [18] Nedialkov N N, Atanasov P A, Breitling D et al. Ablation of metals by ultrashort laser pulses[J]. Proceedings of SPIE, 5830, 80-84(2005).

    [19] Anisimov S I, Kapeliovich B L, Perelman T L. Electron emission from metal surfaces exposed to ultra-short laser pulses[J]. Soviet Physics, 39, 776-781(1974).

    [20] An M, Song Q C, Yu X X et al. Generalized two-temperature model for coupled phonons in nanosized graphene[J]. Nano Letters, 17, 5805-5810(2017).

    [21] Lee J B, Kang K, Lee S H. Comparison of theoretical models of electron-phonon coupling in thin gold films irradiated by femtosecond pulse lasers[J]. Materials Transactions, 52, 547-553(2011).

    [22] Zhang J P, Chen Y P, Hu M N et al. An improved three-dimensional two-temperature model for multi-pulse femtosecond laser ablation of aluminum[J]. Journal of Applied Physics, 117, 063104(2015).

    [23] Lü H L, Mao Y D, Yu M Z et al. Research progress on heat transfer theory in ultra-fast laser heating technology[J]. Laser & Optoelectronics Progress, 57, 010005(2020).

    [24] Cheng J, Liu C S, Shang S et al. A review of ultrafast laser materials micromachining[J]. Optics & Laser Technology, 46, 88-102(2013).

    [25] Alder B J, Wainwright T E. Studies inmolecular dynamics. I. General method[J]. The Journal of Chemical Physics, 31, 459-466(1959).

    [26] Wang L M, Zeng X W. Molecular dynamics simulations of femtosecond laser ablation of silicon. [C]∥Proceedings of 2011 International Conference on Electronics and Optoelectronics, July 29-31, 2011, Dalian, Dalian. New York: IEEE, 12221499(2011).

    [27] Li B, Wong C H. Molecular dynamics studies of lubricant depletion under moving laser heating: effects of laser power and film thickness[J]. Tribology International, 92, 38-46(2015).

    [28] Urbassek H M, Rosandi Y. Insight from molecular dynamics simulation into ultrashort-pulse laser ablation[J]. Proceedings of SPIE, 7842, 784214(2010).

    [29] Gan Y, Chen J K. Thermomechanical wave propagation in gold films induced by ultrashort laser pulses[J]. Mechanics of Materials, 42, 491-501(2010).

    [30] Guan Y, Li L, Niu Z W. Molecular dynamics simulation of solid-liquid phase change considering non-Fourier effect[J]. Journal of Atomic and Molecular Physics, 36, 312-318(2019).

    [31] Ding P J, Liu Q C, Lu X et al. Hydrodynamic simulation of silicon ablation by ultrashort laser irradiation[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 286, 40-44(2012).

    [32] Yu D. Multiscale modeling and experimental study of ultrafast laser processing[D]. Beijing: Beijing Institute of Technology(2016).

    [33] Cuq-Lelandais J P, Boustie M, Berthe L et al. Spallation generated by femtosecond laser driven shocks in thin metallic targets[J]. Journal of Physics D: Applied Physics, 42, 065402(2009).

    [34] Povarnitsyn M E, Fokin V B, Levashov P R. Microscopic andmacroscopic modeling of femtosecond laser ablation of metals[J]. Applied Surface Science, 357, 1150-1156(2015).

    [35] Huang J, Zhang Y W, Chen J K et al. Modeling of ultrafast phase change processes in a thin metal film irradiated by femtosecond laser pulse trains. [C]∥Proceedings of ASME Conference on ASME 2009 International Mechanical Engineering Congress and Exposition, 2069-2077(2010).

    [36] Wang S Y, Ren Y, Cheng C W et al. Micromachining of copper by femtosecond laser pulses[J]. Applied Surface Science, 265, 302-308(2013).

    [37] Cheng C W, Wang S Y, Chang K P et al. Femtosecond laser ablation of copper at high laser fluence: modeling and experimental comparison[J]. Applied Surface Science, 361, 41-48(2016).

    [38] Shao J F, Guo J, Wang T F. Thermal behavior of metal thin film irradiated by femtosecond double-pulse laser[J]. High Power Laser and Particle Beams, 26, 92-97(2014).

    [39] Saghebfar M, Tehrani M K. Darbani S M R, et al. Femtosecond pulse laser ablation of chromium: experimental results and two-temperature model simulations[J]. Applied Physics A, 123, 28(2016).

    [40] Lei C X. Material point method for thermal responses of metals by ultrashort pulse laser irradiation[D]. Hangzhou: Zhejiang University(2017).

    [41] Li Q, Lao H Y, Lin J et al. Study of femtosecond ablation on aluminum film with 3D two-temperature model and experimental verifications[J]. Applied Physics A, 105, 125-129(2011).

    [42] Nedialkov N N, Atanasov P A, Amoruso S et al. Laser ablation of metals by femtosecond pulses: theoretical and experimental study[J]. Applied Surface Science, 253, 7761-7766(2007).

    [43] Lewis L J, Perez D. Laser ablation with short and ultrashort laser pulses: basic mechanisms from molecular-dynamics simulations[J]. Applied Surface Science, 255, 5101-5106(2009).

    [44] Povarnitsyn M E, Khishchenko K V, Levashov P R. Phase transitions in femtosecond laser ablation[J]. Applied Surface Science, 255, 5120-5124(2009).

    [45] Povarnitsyn M E, Itina T E, Levashov P R et al. Simulation of ultrashort double-pulse laser ablation[J]. Applied Surface Science, 257, 5168-5171(2011).

    [46] Povarnitsyn M E, Itina T E, Levashov P R et al. Mechanisms of nanoparticle formation by ultra-short laser ablation of metals in liquid environment[J]. Physical Chemistry Chemical Physics, 15, 3108-3114(2013).

    [47] Povarnitsyn M E, Itina T E. Hydrodynamic modeling of femtosecond laser ablation of metals in vacuum and in liquid[J]. Applied Physics A, 117, 175-178(2014).

    [48] Davydov R V, Antonov V I. Simulation of femtosecond pulsed laser ablation of metals[J]. Journal of Physics: Conference Series, 769, 012060(2016).

    [49] Demaske B, Zhakhovsky V, Inogamov N et al. Ablation and spallation of gold films irradiated by ultrashort laser pulses[J]. Physical Review B, 82, 064113(2010).

    [50] Gan Y. Study on thermal stress response of gold nanorods under ultrafast laser. C]∥Proceedings of the 13th National Academic Conference on Physical Mechanics, Xiangtan, 119(2014).

    [51] Tang Y B, Chen B, Chen Z Y et al[J]. Microscopicphase change of Ni-Ti shape memory alloy target under femto-second laser ablating Electro-Optic Technology Application, 2014, 22-26.

    [52] Wu H, Zhang N, He M et al. Calculation of argon-aluminum interatomic potential and its application in molecular dynamics simulation of femtosecond laser ablation[J]. Chinese Journal of Lasers, 43, 0802004(2016).

    [53] Lei C X, Ren Y P, Gan Y et al. Effect of optical properties on the thermal responses of copper films induced by ultrafast lasers[J]. High Power Laser and Particle Beams, 29, 170017(2017).

    [54] Fedosejevs R, Ottmann R, Sigel R et al. Absorption of femtosecond laser pulses in high-density plasma[J]. Physical Review Letters, 64, 1250-1253(1990).

    [55] Chen Z Y, Mao S S. Femtosecond laser-induced electronic plasma at metal surface[J]. Applied Physics Letters, 93, 051506(2008).

    [56] Zhao X, Shin Y C. Femtosecond laser ablation of aluminum in vacuum and air at high laser intensity[J]. Applied Surface Science, 283, 94-99(2013).

    [57] Povarnitsyn M, Fokin V, Levashov P R et al. Molecular dynamics simulation of subpicosecond double-pulse laser ablation of metals[J]. Physical Review B, 92, 174104(2015).

    [58] Fokin V B, Povarnitsyn M E, Levashov P R. Simulation of ablation and plume dynamics under femtosecond double-pulse laser irradiation of aluminum: comparison of atomistic and continual approaches[J]. Applied Surface Science, 396, 1802-1807(2017).

    [59] Schumacher D W, Chowdhury E A. First principles simulation of laser-induced periodic surface structure using the particle-in-cell method[J]. Proceedings of SPIE, 9632, 96320Y(2015).

    [60] Russell A M, Schumacher D W. First principles simulation of the dynamics of transient warm dense matter during the formation of ultrashort laser pulse induced damage using the particle-in-cell method[J]. Proceedings of SPIE, 1044, 104470H(2017).

    [61] Birnbaum M. Semiconductor surface damage produced by ruby lasers[J]. Journal of Applied Physics, 36, 3688-3689(1965).

    [62] Bonse J, Kirner S V, Höhm S et al. Applications of laser-induced periodic surface structures (LIPSS)[J]. Proceedings of SPIE, 1009, 100920N(2017).

    [63] Bonse J, Krüger J, Höhm S et al. Femtosecond laser-induced periodic surface structures[J]. Journal of Laser Applications, 24, 042006(2012).

    [64] Guay J M, Lesina A C, Baxter J et al. -09-15) [2020-02-03]. https: ∥arxiv., org/abs/1609, 04847(2016).

    [65] Wang X C, Zheng H Y, Wan Y C et al. Picosecond laser surface texturing of a stavax steel substrate for wettability control[J]. Engineering, 4, 816-821(2018).

    [66] Zhang J Z, Chen F, Yong J L et al. Research progress on bioinspired superhydrophobic surface induced by femtosecond laser[J]. Laser & Optoelectronics Progress, 55, 110001(2018).

    [67] Hu G Q, Guan K, Lu L B et al. Engineered functional surfaces by laser microprocessing for biomedical applications[J]. Engineering, 4, 822-830(2018).

    [68] Cunha A, Elie A M, Plawinski L et al. Femtosecond laser surface texturing of titanium as a method to reduce the adhesion of Staphylococcus aureus and biofilm formation[J]. Applied Surface Science, 360, 485-493(2016).

    [69] Djouder M, Itina T E, Deghiche D et al. Modelling the formation of nanostructures on metal surface induced by femtosecond laser ablation[J]. Applied Surface Science, 258, 2580-2583(2012).

    [70] Djouder M, Lamrous O, Mitiche M D et al. Electromagnetic particle-in-cell (PIC) method for modeling the formation of metal surface structures induced by femtosecond laser radiation[J]. Applied Surface Science, 280, 711-714(2013).

    [71] Ivanov D S, Lipp V, Blumenstein A et al. Experimental and theoretical investigation of periodic nanostructuring of Au with ultrashort UV laser pulses near the damage threshold[J]. Physical Review Applied, 4, 064006(2015).

    [72] Levy Y. Derrien T J Y, Bulgakova N M, et al. Relaxation dynamics of femtosecond-laser-induced temperature modulation on the surfaces of metals and semiconductors[J]. Applied Surface Science, 374, 157-164(2016).

    [73] Shugaev M V, Gnilitskyi I, Bulgakova N M et al. Mechanism of single-pulse ablative generation of laser-induced periodic surface structures[J]. Physical Review B, 96, 205429(2017).

    [74] Rudenko A, Mauclair C, Garrelie F et al. Amplification and regulation of periodic nanostructures in multipulse ultrashort laser-induced surface evolution by electromagnetic-hydrodynamic simulations[J]. Physical Review B, 99, 235412(2019).

    [75] Kaselouris E, Nikolos I K, Orphanos Y et al. A review of simulation methods of laser matter interactions focused on nanosecond laser pulsed systems[J]. Journal of Multiscale Modelling, 05, 1330001(2013).

    Zhiquan Cui, Yingchun Guan. Review of Numerical Models of Ultrafast Laser Processing[J]. Laser & Optoelectronics Progress, 2020, 57(11): 111408
    Download Citation