• Chinese Optics Letters
  • Vol. 20, Issue 4, 040602 (2022)
Yulong Cui1、2, Wei Huang1、2, Zhiyue Zhou1、2, Hao Li1、2, Meng Wang1、2、3, Zilun Chen1、2、3, and Zefeng Wang1、2、3、*
Author Affiliations
  • 1College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, China
  • 2State Key Laboratory of Pulsed Power Laser Technology, Changsha 410073, China
  • 3Hunan Provincial Key Laboratory of High Energy Laser Technology, Changsha 410073, China
  • show less
    DOI: 10.3788/COL202220.040602 Cite this Article Set citation alerts
    Yulong Cui, Wei Huang, Zhiyue Zhou, Hao Li, Meng Wang, Zilun Chen, Zefeng Wang. Highly efficient and stable coupling of kilowatt-level continuous wave laser into hollow-core fibers[J]. Chinese Optics Letters, 2022, 20(4): 040602 Copy Citation Text show less
    References

    [1] P. Russell, P. Hölzer, W. Chang, A. Abdolvand, J. C. Travers. Hollow-core photonic crystal fibres for gas-based nonlinear optics. Nat. Photonics, 8, 278(2014).

    [2] A. V. V. Nampoothiri, A. M. Jones, C. Fourcade-Dutin, C. Mao, N. Dadashzadeh, B. Baumgart, Y. Wang, M. Alharbi, T. Bradley, N. Campbell. Hollow-core optical fiber gas lasers (HOFGLAS): a review [Invited]. Opt. Mater. Express, 2, 948(2012).

    [3] H. Li, W. Huang, Y. Cui, Z. Zhou, Z. Wang. 3 W tunable 1.65 m fiber gas Raman laser in D2-filled hollow-core photonic crystal fibers. Opt. Laser Technol., 132, 106474(2020).

    [4] M. S. Astapovich, A. V. Gladyshev, M. M. Khudyakov, A. F. Kosolapov, M. E. Likhachev, I. A. Bufetov. Watt-level nanosecond 4.42-µm Raman laser based on silica fiber. IEEE Photonics Technol. Lett., 31, 78(2019).

    [5] L. Cao, S. Gao, Z. Peng, X. Wang, P. Wang. High peak power 2.8 µm Raman laser in a methane-filled negative-curvature fiber. Opt. Express, 26, 5609(2018).

    [6] A. V. Gladyshev, A. F. Kosolapov, M. M. Khudyakov, Y. Yatsenko, A. N. Kolyadin, A. A. Krylov, A. Pryamikov, A. S. Biriukov, M. E. Likhachev, I. A. Bufetov. 2.9, 3.3 and 3.5 µm Raman lasers based on revolver hollow-core silica fiber filled by H2 /D2 gas mixture. IEEE J. Sel. Top. Quantum Electron., 24, 0903008(2018).

    [7] F. C. Ouny, B. J. Mangan, A. V. Sokolov, F. Benabid. High power 55 watts CW Raman fiber-gas-laser. Conference on Lasers and Electro-Optics (CLEO), CTuM3(2010).

    [8] F. Benabid. Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber. Science, 298, 399(2002).

    [9] F. B. A. Aghbolagh, V. Nampoothiri, B. Debord, F. Gerome, L. Vincetti, F. Benabid, W. Rudolph. Mid IR hollow core fiber gas laser emitting at 4.6 um. Opt. Lett., 44, 383(2019).

    [10] Y. Cui, W. Huang, Z. Wang, M. Wang, Z. Zhou, Z. Li, S. Gao, Y. Wang, P. Wang. 4.3 µm fiber laser in CO2 fibers. Optica, 6, 951(2019).

    [11] Z. Zhou, N. Tang, Z. Li, W. Huang, Z. Wang, W. Wu, W. Hua. High-power tunable mid-infrared fiber gas laser source by acetylene-filled hollow-core fibers. Opt. Express, 26, 19144(2018).

    [12] M. Xu, Y. Fei, K. Jonathan. Mid-infrared 1 W hollow-core fiber gas laser source. Opt. Lett., 42, 4055(2017).

    [13] M. R. A. Hassan, F. Yu, W. J. Wadsworth, J. C. Knight. Cavity-based mid-IR fiber gas laser pumped by a diode laser. Optica, 3, 218(2016).

    [14] A. M. Jones, A. V. V. Nampoothiri, A. Ratanavis, T. Fiedler, W. Rudolph. Mid-infrared gas filled photonic crystal fiber laser based on population inversion. Opt. Express, 19, 2309(2011).

    [15] X. Zhu, D. Wu, Y. Wang, F. Yu, Q. Li, Y. Qi, J. Knight, S. Chen, L. Hu. Delivery of CW laser power up to 300 watts at 1080 nm by an uncooled low-loss anti-resonant hollow-core fiber. Opt. Express, 29, 1492(2021).

    [16] S. H. Drich, J. Rothhardt, S. Demmler, M. Tschernajew, A. Hoffmann, M. Krebs, A. Liem, O. D. Vries, M. Pl Tner, S. Fabian. Scalability of components for kW-level average power few-cycle lasers. Appl. Opt., 55, 1636(2016).

    [17] F. Benabid, F. Couny, J. Knight, T. Birks, P. Russell. Compact, stable and efficient all-fibre gas cells using hollow-core photonic crystal fibres. Nature, 434, 488(2005).

    [18] P. S. Light, F. Couny, F. Benabid. Low optical insertion-loss and vacuum-pressure all-fiber acetylene cell based on hollow-core photonic crystal fiber. Opt. Lett., 31, 2538(2006).

    [19] K. Z. Aghaie, M. J. F. Digonnet, S. Fan. Optimization of the splice loss between photonic-bandgap fibers and conventional single-mode fibers. Opt. Lett., 35, 1938(2010).

    [20] S. Gao, Y. Wang, C. Tian, P. Wang. Splice loss optimization of a photonic bandgap fiber via a high V-number fiber. IEEE Photonics Technol. Lett., 26, 2134(2014).

    [21] H. Li, W. Huang, W. Pei, Z. Zhou, Y. Cui, M. Wang, Z. Wang. All-fiber gas Raman laser oscillator. Opt. Lett., 46, 5208(2021).

    [22] W. Pei, H. Li, W. Huang, M. Wang, Z. Wang. Hydrogen molecules rotational stimulated Raman scattering in all-fiber cavity based on hollow-core photonic crystal fibers. Crystals, 11, 711(2021).

    [23] W. Pei, H. Li, W. Huang, M. Wang, Z. Wang. All-fiber tunable pulsed 1.7 µm fiber lasers based on stimulated Raman scattering of hydrogen molecules in hollow-core fibers. Molecules, 26, 4561(2021).

    [24] W. Pei, H. Li, W. Huang, M. Wang, Z. Wang. Pulsed fiber laser oscillator at 1.7 µm by stimulated Raman scattering in H2-filled hollow-core photonic crystal fibers. Opt. Express, 29, 33915(2021).

    [25] W. Pei, H. Li, W. Huang, M. Wang, Z. Wang. All-fiber gas Raman laser by D2-filled hollow-core photonic crystal fibers. Photonics, 8, 382(2021).

    [26] X. Zheng, B. Debord, L. Vincetti, B. Beaudou, F. A. Benabid. Fusion splice between tapered inhibited coupling hypocycloid-core Kagome fiber and SMF. Opt. Express, 24, 14642(2016).

    [27] R. Zeltner, S. Xie, R. Pennetta, P. Russell. Broadband, lensless and optomechanically stabilised coupling into microfluidic hollow-core photonic crystal fiber using glass nanospike. ACS Photonics, 4, 378(2016).

    [28] W. Huang, Y. Cui, Z. Zhou, Z. Li, Y. Chen, Z. Wang. Towards all-fiber structure pulsed mid-infrared laser by gas-filled hollow-core fibers. Chin. Opt. Lett., 17, 091402(2019).

    [29] Y. Cui, Z. Zhou, W. Huang, Z. Li, Z. Wang. Quasi-all-fiber structure CW mid-infrared laser emission from gas-filled hollow-core silica fibers. Opt. Laser Technol., 121, 105794(2019).

    [30] W. Huang, Y. Cui, X. Li, Z. Zhou, Z. Wang. Low-loss coupling from single-mode solid-core fibers to anti-resonant hollow-core fibers by fiber tapering technique. Opt. Express, 27, 37111(2019).

    [31] R. Yu, C. Wang, F. Benabid, K. S. Chiang, L. Xiao. Robust mode matching between structurally dissimilar optical fiber waveguides. ACS Photonics, 8, 857(2021).

    [32] C. Wang, R. Yu, B. Debord, F. Gérôme, F. Benabid, K. S. Chiang, L. Xiao. Ultralow-loss fusion splicing between negative curvature hollow-core fibers and conventional SMFs with a reverse-tapering method. Opt. Express, 29, 22470(2021).

    [33] J. Shi, X. Ye, Y. Cui, W. Huang, H. Li, Z. Zhou, M. Wang, Z. Chen, Z. Wang. All-fiber gas cavity based on anti-resonant hollow-core fibers fabricated by splicing with end caps. Photonics, 8, 371(2021).

    Data from CrossRef

    [1] Xuan Zhuo, Linhao Zhou, Yinxu Bian, Hua Shen. Efficient taper optical hydrogel fiber coupler drawn from suspended photocuring 3D printing. Optics Letters, 47, 4853(2022).

    Yulong Cui, Wei Huang, Zhiyue Zhou, Hao Li, Meng Wang, Zilun Chen, Zefeng Wang. Highly efficient and stable coupling of kilowatt-level continuous wave laser into hollow-core fibers[J]. Chinese Optics Letters, 2022, 20(4): 040602
    Download Citation