• Matter and Radiation at Extremes
  • Vol. 7, Issue 2, 024401 (2022)
B. Martinez1、2、*, S. N. Chen3, S. Bolaños1, N. Blanchot4, G. Boutoux2, W. Cayzac2, C. Courtois2, X. Davoine2、5, A. Duval2, V. Horny1、2, I. Lantuejoul2, L. Le Deroff4, P. E. Masson-Laborde2、5, G. Sary2、5, B. Vauzour2, R. Smets6, L. Gremillet2、5, and J. Fuchs1
Author Affiliations
  • 1LULI-CNRS, CEA, UPMC Univ Paris 06: Sorbonne Université, Ecole Polytechnique, Institut Polytechnique de Paris, F-91128 Palaiseau Cedex, France
  • 2CEA, DAM, DIF, F-91297 Arpajon, France
  • 3Horia Hulubei National Institute of Physics and Nuclear Engineering, Bucharest–Magurele, Romania
  • 4CEA, DAM, CESTA, F-33114 Le Barp, France
  • 5Université Paris-Saclay, CEA, LMCE, 91680 Bruyères-le-Châtel, France
  • 6LPP, Sorbonne Université, CNRS, Ecole Polytechnique, F-91128 Palaiseau Cedex, France
  • show less
    DOI: 10.1063/5.0060582 Cite this Article
    B. Martinez, S. N. Chen, S. Bolaños, N. Blanchot, G. Boutoux, W. Cayzac, C. Courtois, X. Davoine, A. Duval, V. Horny, I. Lantuejoul, L. Le Deroff, P. E. Masson-Laborde, G. Sary, B. Vauzour, R. Smets, L. Gremillet, J. Fuchs. Numerical investigation of spallation neutrons generated from petawatt-scale laser-driven proton beams[J]. Matter and Radiation at Extremes, 2022, 7(2): 024401 Copy Citation Text show less
    References

    [1] I.Obodovskiy. Radiation: Fundamentals, Applications, Risks, and Safety, 289-292(2019).

    [2] T.Kaiserfeld, O.Hallonsten. Between Making and Knowing, 553-560(2020).

    [3] R.Garoby et al. The European spallation source design. Phys. Scr., 93, 014001(2018).

    [4] F.Goldenbaum, D.Filges. Handbook of Spallation Research: Theory, Experiments and Applications(2009).

    [5] H.Ahmed, A.Green, S. R.Mirfayzi, A.Alejo, M.Borghesi, S.Kar. Recent advances in laser-driven neutron sources. Nuovo Cimento, 38C, 188(2016).

    [6] T.Ditmire, M. D.Perry, L. J.Perkins, B. G.Logan, M. D.Rosen, N. M.Ghoniem, S. C.Wilks, T.Diaz de la Rubia, P. T.Springer. The investigation of high intensity laser driven micro neutron sources for fusion materials research at high fluence. Nucl. Fusion, 40, 1(2000).

    [7] R.Loveman, T.Gozani, J.Bendahan, J.Stevenson. Time of flight fast neutron radiography. Nucl. Instrum. Methods Phys. Res., Sect. B, 99, 765(1995).

    [8] D. P.Higginson, H.Nakamura, A.Mackinnon, J. M.McNaney, K. A.Tanaka, S.Le Pape, D.Mariscal, N.Nakanii, T.Bartal, F. N.Beg, R.Kodama, D. C.Swift, D. S.Hey. Laser generated neutron source for neutron resonance spectroscopy. Phys. Plasmas, 17, 100701(2010).

    [9] A.Beck, I.Pomerantz, N.Fotiades, O.Noam, D. C.Gautier. Fast neutron resonance radiography with full time-series digitization. Nucl. Instrum. Methods Phys. Res., Sect. A, 955, 163309(2020).

    [10] G.Schaumann, A.Favalli, K.Schoenberg, M.Roth, J. L.Tybo, G. A.Wurden, B. M.Hegelich, F.Wagner, C. H.Wilde, T.Taddeucci, T.Shimada, N.Guler, R. P.Johnson, D.Gautier, J.Fernandez, M.Schollmeier, R.Haight, K.Falk, F.Merrill, S. A.Wender, O.Deppert, M.Geissel, M.Devlin, C. E.Hamilton, D.Jung. Bright laser-driven neutron source based on the relativistic transparency of solids. Phys. Rev. Lett., 110, 044802(2013).

    [11] F.Wagner et al. Maximum proton energy above 85 MeV from the relativistic interaction of laser pulses with micrometer thick CH2 targets. Phys. Rev. Lett., 116, 205002(2016).

    [12] A.Higginson, S. R.Mirfayzi, R. J.Clarke, S.Kar, C.Armstrong, M.Borghesi, P.Martin, R. J.Gray, N. M. H.Butler, D.Neely, R. J.Dance, S. D. R.Williamson, S. J.Hawkes, P.McKenna, M.King, R.Capdessus, W. Q.Wei, J. S.Green, R.Wilson, X. H.Yuan. Near-100 MeV protons via a laser-driven transparency-enhanced hybrid acceleration scheme. Nat. Commun., 9, 724(2018).

    [13] J.Feng et al. High-efficiency neutron source generation from photonuclear reactions driven by laser plasma accelerator. High Engergy Density Phys., 36, 100753(2020).

    [14] B. M.Hegelich, C.Chester, A. C.Lestrade, A. C.Bernstein, T.Ditmire, D.Hamilton, I.Pomerantz, A.Arefiev, C.Wang, J.Cortez, E. W.Gaul, M. E.Donovan, A. R.Meadows, E.McCary, G.Dyer, D.Kuk. Ultrashort pulsed neutron source. Phys. Rev. Lett., 113, 184801(2014).

    [15] , 50.

    [16] S.Ansell, D.Neely, M.Notley, J.Kelleher, C. M.Brenner, M.Borghesi, S. R.Mirfayzi, N. M. H.Butler, D. R.Rusby, S.Kar, C.Armstrong, R. J.Clarke, N. J.Rhodes, D.Raspino, L. A.Wilson, P.McKenna, A.Higginson, E.Schooneveld, H.Ahmed, A.Alejo, C. D.Murphy. Experimental demonstration of a compact epithermal neutron source based on a high power laser. Appl. Phys. Lett., 111, 044101(2017).

    [17] M.Thoennessen. Reaching the limits of nuclear stability. Rep. Prog. Phys., 67, 1187(2004).

    [18] K.Spohr, S. N.Chen, F.Negoita, J.Fuchs, E.d’Humières, I.Pomerantz. Extreme brightness laser-based neutron pulses as a pathway for investigating nucleosynthesis in the laboratory. Matter Radiat. Extremes, 4, 054402(2019).

    [19] Y.Wu, P.Hill. Exploring laser-driven neutron sources for neutron capture cascades and the production of neutron-rich isotopes. Phys. Rev. C, 103, 014602(2021).

    [20] T.Kajino et al. Current status of r-process nucleosynthesis. Prog. Part. Nucl. Phys., 107, 109(2019).

    [21] F.-K.Thielemann, J. J.Cowan, J. W.Truran. The R-process and nucleochronology. Phys. Rep., 208, 267(1991).

    [22] I. S.Anderson, R.Senesi, G.Festa, C.-K.Loong, G.Gorini, J. M.Carpenter, C.Andreani. Research opportunities with compact accelerator-driven neutron sources. Phys. Rep., 654, 1(2016).

    [23] B.Blue, C.Yeamans.

    [24] V. Yu.Bychenkov, A.Maksimchuk, V.Chvykov, V.Yanovsky, D. W.Litzenberg, S. S.Bulanov, A. G. R.Thomas, T.Matsuoka, K.Krushelnick, L.Willingale, G.Kalinchenko. Generation of GeV protons from 1 PW laser interaction with near critical density targets. Phys. Plasmas, 17, 043105(2010).

    [25] G. M.Petrov, J.Davis. Generation of GeV ion bunches from high-intensity laser-target interactions. Phys. Plasmas, 16, 023105(2009).

    [26] J. A.Wheeler, G.Mourou, J. H.Bin, X. Q.Yan, M. L.Zhou, J.Schreiber, T.Tajima. Proton acceleration by single-cycle laser pulses offers a novel monoenergetic and stable operating regime. Phys. Plasmas, 23, 043112(2016).

    [27] E.d’Humières et al. Longitudinal laser ion acceleration in low density targets: Experimental optimization on the titan laser facility and numerical investigation of the ultra-high intensity limit. Proc. SPIE, 9514, 95140B(2015).

    [28] V. Yu.Bychenkov, W.Rozmus, A. V.Brantov, E. A.Govras. Ion energy scaling under optimum conditions of laser plasma acceleration from solid density targets. Phys. Rev. Spec. Top.--Accel. Beams, 18, 021301(2015).

    [29] V. Yu.Bychenkov, V. F.Kovalev, A. V.Brantov, E. A.Govras. Synchronized ion acceleration by ultraintense slow light. Phys. Rev. Lett., 116, 085004(2016).

    [30] A. A.Sahai et al. Relativistically induced transparency acceleration of light ions by an ultrashort laser pulse interacting with a heavy-ion-plasma density gradient. Phys. Rev. E, 88, 043105(2013).

    [31] H. Y.Wang et al. High-energy monoenergetic proton beams from two-stage acceleration with a slow laser pulse. Phys. Rev. Spec. Top.--Accel. Beams, 18, 021302(2015).

    [32] S.Hatchett, M.Roth, R. A.Snavely, M.Singh, S. C.Wilks, T. E.Cowan, A.MacKinnon, D.Pennington, M. H.Key, A. B.Langdon. Energetic proton generation in ultra-intense laser–solid interactions. Phys. Plasmas, 8, 542(2001).

    [33] M.Passoni, A.Macchi, M.Borghesi. Ion acceleration by superintense laser-plasma interaction. Rev. Mod. Phys., 85, 751(2013).

    [34] D. A.Brown et al. ENDF/B-VIII.0: The 8th major release of the nuclear reaction data library with CIELO-project cross sections, new standards and thermal scattering data. Nucl. Data Sheets, 148, 1(2018).

    [35] A.Casner, S.Darbon, J.-P.LeBreton, A.Duval, C.Reverdin, J.-P.Jadaud, R.Wrobel, N.Blanchot, J.-L.Miquel, T.Caillaud, B.Villette, R.Rosch, B.Rosse, I.Thfouin. LMJ/PETAL laser facility: Overview and opportunities for laboratory astrophysics. High Engergy Density Phys., 17, 2(2015).

    [36] C.Le Blanc, P.Audebert, A.Beluze, P.Ramirez, F.Mathieu, D. N.Papadopoulos, J. P.Zou, A.Fréneaux, N.Lebas, P.Monot, L.Martin, P.Georges, G.Chériaux, G.Mennerat, F.Druon. The Apollon 10 PW laser: Experimental and theoretical investigation of the temporal characteristics. High Power Laser Sci. Eng., 4, e34(2016).

    [37] D.Batani et al. Development of the PETAL laser facility and its diagnostic tools. Acta Polytech., 53, 103(2013).

    [38] S.Weber, O.Klimo, J.Vysko?il. Simulations of bremsstrahlung emission in ultra-intense laser interactions with foil targets. Plasma Phys. Controlled Fusion, 60, 054013(2018).

    [39] J.Vysko?il, O.Klimo, E.Gelfer. Inverse Compton scattering from solid targets irradiated by ultra-short laser pulses in the 1022–1023 W/cm2 regime. Plasma Phys. Controlled Fusion, 62, 064002(2020).

    [40] A. P. L.Robinson, C. P.Ridgers, J. G.Kirk, T. D.Arber, A. R.Bell, R.Duclous, C. S.Brady, K.Bennett. Dense electron-positron plasmas and ultraintense γ-rays from laser-irradiated solids. Phys. Rev. Lett., 108, 165006(2012).

    [41] R.Ba?e, J.Naylon, J.Polan, M.Ko?elja, J.Hou?vi?ka, E.Koutris, J.Nóvak, P.Korous, M.Fibrich, J.H?ebí?ek, T.Havlí?ek, B.Rus, P.Bakule, G.Korn, M.Laub, J. T.Green, P.Homer, J.Thoma, T.Mazanec, M.Novák, A.Honsa, M.Vítek, R.Barros, F.Batysta, D.Kramer, C.Zervos. ELI-beamlines laser systems: Status and design options. Proc. SPIE, 8780, 87801T(2013).

    [42] D.Doria, M. O.Cernaianu, C.Ticos, P.Ghenuche, K. A.Tanaka, C. A.Ur, D.Stutman. Overview of ELI-NP status and laser commissioning experiments with 1 PW and 10 PW class-lasers. J. Instrum., 15, C09053(2020).

    [43] M. P. W.Chin, P. R.Sala, F.Cerutti, A.Mairani, A.Ferrari, V.Vlachoudis, T. T.B?hlen, P. G.Ortega, A.Fassò, G.Smirnov. The FLUKA code: Developments and challenges for high energy and medical applications. Nucl. Data Sheets, 120, 211-214(2014).

    [44] A.Ferrari, P. R.Sala, J.Ranft, A.Fassò. FLUKA: A multi-particle transport code(2005).

    [45] M. J.Berger, M. A.Zucker, J. S.Coursey, J.Chang(2005).

    [46] E.Lefebvre et al. Electron and photon production from relativistic laser–plasma interactions. Nucl. Fusion, 43, 629(2003).

    [47] A. F.Lifschitz et al. Particle-in-cell modelling of laser–plasma interaction using Fourier decomposition. J. Comput. Phys., 228, 1803(2009).

    [48] D.Raffestin et al. Enhanced ion acceleration using the high-energy petawatt PETAL laser. Matter Radiat. Extremes, 6, 056901(2021).

    [49] E.Lefebvre et al. Development and validation of the TROLL radiation-hydrodynamics code for 3D hohlraum calculations. Nucl. Fusion, 59, 032010(2018).

    [50] B.Rossé, C.Pès, P.Prunet, C.Reverdin, G.Boutoux, D.Loiseau, B.Marchet, K.Jakubowska, L.Lecherbourg, X.Leboeuf, J.-C.Toussaint, D.Raffestin, A.Chancé, I.Lantuéjoul, B.Gastineau, B.Vauzour, A.Duval, J.-E.Ducret, F.Granet, N.Rabhi, T.Caillaud, A.Lotode, F.Harrault, D.Leboeuf, S.Hulin, D.Batani, L.Sérani, J.-C.Guillard, T.Ceccotti, C.Rousseaux, J.Fuchs, D.Dubreuil. SEPAGE: A proton-ion-electron spectrometer for LMJ-PETAL. Proc. SPIE, 10763, 107630X(2018).

    [51] A.Lévy et al. Double plasma mirror for ultrahigh temporal contrast ultraintense laser pulses. Opt. Lett., 32, 310(2007).

    [52] L.Yin, B. J.Albright, F.Guo, D. J.Stark. Effects of dimensionality on kinetic simulations of laser-ion acceleration in the transparency regime. Phys. Plasmas, 24, 053103(2017).

    [53] K.Burdonov et al. Characterization and performance of the Apollon short-focal-area facility following its commissioning at 1 PW level. Matter Radiat. Extremes, 6, 064402(2021).

    [54] T.Suzuki et al. β-decay rates for exotic nuclei and r-process nucleosynthesis up to thorium and uranium. Astrophys. J., 859, 133(2018).

    B. Martinez, S. N. Chen, S. Bolaños, N. Blanchot, G. Boutoux, W. Cayzac, C. Courtois, X. Davoine, A. Duval, V. Horny, I. Lantuejoul, L. Le Deroff, P. E. Masson-Laborde, G. Sary, B. Vauzour, R. Smets, L. Gremillet, J. Fuchs. Numerical investigation of spallation neutrons generated from petawatt-scale laser-driven proton beams[J]. Matter and Radiation at Extremes, 2022, 7(2): 024401
    Download Citation