• Photonics Research
  • Vol. 10, Issue 3, 793 (2022)
Lijia Song1、2, Tangnan Chen1, Weixi Liu1, Hongxuan Liu1, Yingying Peng1, Zejie Yu1, Huan Li1, Yaocheng Shi1, and Daoxin Dai1、2、*
Author Affiliations
  • 1State Key Laboratory for Modern Optical Instrumentation, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
  • 2International Research Center for Advanced Photonics, Zhejiang University, Haining 314499, China
  • show less
    DOI: 10.1364/PRJ.447478 Cite this Article Set citation alerts
    Lijia Song, Tangnan Chen, Weixi Liu, Hongxuan Liu, Yingying Peng, Zejie Yu, Huan Li, Yaocheng Shi, Daoxin Dai. Toward calibration-free Mach–Zehnder switches for next-generation silicon photonics[J]. Photonics Research, 2022, 10(3): 793 Copy Citation Text show less
    References

    [1] Y. Li, L. Tong. Mach–Zehnder interferometers assembled with optical microfibers or nanofibers. Opt. Lett., 33, 303-305(2008).

    [2] D. A. B. Miller. Perfect optics with imperfect components. Optica, 2, 747-750(2015).

    [3] Y. Zhang, Q. Du, C. Wang, T. Fakhrul, S. Liu, L. Deng, D. Huang, P. Pintus, J. Bowers, C. A. Ross, J. Hu, L. Bi. Monolithic integration of broadband optical isolators for polarization-diverse silicon photonics. Optica, 6, 473-478(2019).

    [4] S. Ghosh, S. Keyvaninia, Y. Shoji, W. Roy, T. Mizumoto, G. Roelkens, R. Baets. Compact Mach–Zehnder interferometer Ce:YIG/SOI optical isolators. IEEE Photon. Technol. Lett., 24, 1653-1656(2012).

    [5] C. Zhang, P. Morton, J. Khurgin, J. Peters, J. Bowers. Ultralinear heterogeneously integrated ring-assisted Mach–Zehnder interferometer modulator on silicon. Optica, 3, 1483-1488(2016).

    [6] A. M. Al-Hetar, A. B. Mohammad, A. S. M. Supaat, Z. A. Shamsan. MMI-MZI polymer thermo-optic switch with a high refractive index contrast. J. Lightwave Technol., 29, 171-178(2011).

    [7] M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, X. Cai. High-performance hybrid silicon and lithium niobate Mach–Zehnder modulators for 100 Gbit s−1 and beyond. Nat. Photonics, 13, 359-364(2019).

    [8] A. Ribeiro, A. Ruocco, L. Vanacker, W. Bogaerts. Demonstration of a 4 × 4-port universal linear circuit. Optica, 3, 1348-1357(2016).

    [9] J. S. Barton, E. J. Skogen, M. L. Masanovic, S. P. Denbaars, L. A. Coldren. A widely tunable high-speed transmitter using an integrated SGDBR laser-semiconductor optical amplifier and Mach-Zehnder modulator. IEEE J. Sel. Top. Quantum Electron., 9, 1113-1117(2003).

    [10] R. Amin, R. Maiti, Y. Gui, C. Suer, M. Miscuglio, E. Heidari, R. T. Chen, H. Dalir, V. J. Sorger. Sub-wavelength GHz-fast broadband ITO Mach–Zehnder modulator on silicon photonics. Optica, 7, 333-335(2020).

    [11] H. Wang, H. Chai, Z. Lv, Z. Zhang, L. Meng, X. Yang, T. Yang. Silicon photonic transceivers for application in data centers. J. Semicond., 41, 101301(2020).

    [12] P. Bhasker, J. Norman, J. Bowers, N. Dagli. Intensity and phase modulators at 1.55 μm in GaAs/AlGaAs layers directly grown on silicon. J. Lightwave Technol., 36, 4205-4210(2018).

    [13] D. Korn, R. Palmer, H. Yu. Silicon-organic hybrid (SOH) IQ modulator using the linear electro-optic effect for transmitting 16QAM at 112 Gbit/s. Opt. Express, 21, 13219-13227(2013).

    [14] X. Yang, M. S. Nisar, W. Yuan, F. Zheng, L. Lu, J. Chen, L. Zhou. Phase change material enabled 2 × 2 silicon nonvolatile optical switch. Opt. Lett., 46, 4224-4227(2021).

    [15] W. R. Clements, P. C. Humphreys, B. J. Metcalf, W. S. Kolthammer, I. A. Walmsley. Optimal design for universal multiport interferometers. Optica, 3, 1460-1465(2016).

    [16] M. Reck, A. Zeilinger, H. J. Bernstein, P. Bertani. Experimental realization of any discrete unitary operator. Phys. Rev. Lett., 73, 58-61(1994).

    [17] A. Liu, R. Jones, L. Liao, D. Samara-Rubio, D. Rubin, O. Cohen, R. Nicolaescu, M. Paniccia. A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor. Nature, 427, 615-618(2004).

    [18] R. A. Soref, F. De Leonardis, V. M. N. Passaro. Reconfigurable optical-microwave filter banks using thermo-optically tuned Bragg Mach-Zehnder devices. Opt. Express, 26, 14879-14893(2018).

    [19] F. Horst, W. M. J. Green, S. Assefa, S. M. Shank, Y. A. Vlasov, B. J. Offrein. Cascaded Mach-Zehnder wavelength filters in silicon photonics for low loss and flat pass-band WDM (de-)multiplexing. Opt. Express, 21, 11652-11658(2013).

    [20] M. E. Ganbold, H. Nagai, Y. Mori, K. Suzuki, H. Matsuura, K. Tanizawa, K. Ikeda, S. Namiki, H. Kawashima, K. I. Sato. A large-scale optical circuit switch using fast wavelength-tunable and bandwidth-variable filters. IEEE Photon. Technol. Lett., 30, 1439-1442(2018).

    [21] L. Shen, L. Lu, Z. Guo, L. Zhou, J. Chen. Silicon optical filters reconfigured from a 16 × 16 Benes switch matrix. Opt. Express, 27, 16945-16957(2019).

    [22] Q. Wu, L. Zhou, X. Sun, H. Zhu, L. Lu, J. Chen. Silicon thermo-optic variable optical attenuators based on Mach–Zehnder interference structures. Opt. Commun., 341, 69-73(2015).

    [23] K. Misiakos, I. Raptis, E. Makarona, A. Botsialas, A. Salapatas, P. Oikonomou, A. Psarouli, P. S. Petrou, S. E. Kakabakos, K. Tukkiniemi, M. Sopanen, G. Jobst. All-silicon monolithic Mach-Zehnder interferometer as a refractive index and bio-chemical sensor. Opt. Express, 22, 26803-26813(2014).

    [24] M. Yang, W. M. J. Green, S. Assefa, J. Van Campenhout, B. G. Lee, C. V. Jahnes, F. E. Doany, C. L. Schow, J. A. Kash, Y. A. Vlasov. Non-blocking 4 × 4 electro-optic silicon switch for on-chip photonic networks. Opt. Express, 19, 47-54(2011).

    [25] N. Dupuis, A. V. Rylyakov, C. L. Schow, D. M. Kuchta, C. W. Baks, J. S. Orcutt, D. M. Gill, W. M. J. Green, B. G. Lee. Ultralow crosstalk nanosecond-scale nested 2 × 2 Mach–Zehnder silicon photonic switch. Opt. Lett., 41, 3002-3005(2016).

    [26] K. Suzuki, R. Konoike, G. Cong, K. Yamada, S. Namiki, H. Kawashima, K. Ikeda. Strictly non-blocking 8 × 8 silicon photonics switch operating in the O-band. J. Lightwave Technol., 39, 1096-1101(2021).

    [27] S. Wang, D. Dai. Polarization-insensitive 2 × 2 thermo-optic Mach-Zehnder switch on silicon. Opt. Lett., 43, 2531-2534(2018).

    [28] F. Duan, K. Chen, D. Chen, Y. Yu. Low-power and high-speed 2 × 2 thermo-optic MMI-MZI switch with suspended phase arms and heater-on-slab structure. Opt. Lett., 46, 234-237(2021).

    [29] L. Chen, Y.-K. Chen. Compact, low-loss and low-power 8 × 8 broadband silicon optical switch. Opt. Express, 20, 18977-18985(2012).

    [30] S. Zhao, L. Lu, L. Zhou, D. Li, Z. Guo, J. Chen. 16 × 16 silicon Mach–Zehnder interferometer switch actuated with waveguide microheaters. Photon. Res., 4, 202-207(2016).

    [31] L. Qiao, W. Tang, T. Chu. 32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units. Sci. Rep., 7, 42306(2017).

    [32] K. Tanizawa, K. Suzuki, M. Toyama, M. Ohtsuka, N. Yokoyama, K. Matsumaro, M. Seki, K. Koshino, T. Sugaya, S. Suda, G. Cong, T. Kimura, K. Ikeda, S. Namiki, H. Kawashima. Ultra-compact 32 × 32 strictly-non-blocking Si-wire optical switch with fan-out LGA interposer. Opt. Express, 23, 17599-17606(2015).

    [33] L. Song, H. Li, D. Dai. Mach–Zehnder silicon-photonic switch with low random phase errors. Opt. Lett., 46, 78-81(2021).

    [34] K. Suzuki, G. Cong, K. Tanizawa, S.-H. Kim, K. Ikeda, S. Namiki, H. Kawashima. Ultra-high-extinction-ratio 2 × 2 silicon optical switch with variable splitter. Opt. Express, 23, 9086-9092(2015).

    [35] N. Dupuis, B. G. Lee. Impact of topology on the scalability of Mach–Zehnder-based multistage silicon photonic switch networks. J. Lightwave Technol., 36, 763-772(2018).

    Lijia Song, Tangnan Chen, Weixi Liu, Hongxuan Liu, Yingying Peng, Zejie Yu, Huan Li, Yaocheng Shi, Daoxin Dai. Toward calibration-free Mach–Zehnder switches for next-generation silicon photonics[J]. Photonics Research, 2022, 10(3): 793
    Download Citation