• Photonics Research
  • Vol. 10, Issue 12, 2734 (2022)
Nicola Pellizzi1, Alfredo Mazzulla2、3、*, Pasquale Pagliusi1、2, and Gabriella Cipparrone1、4、*
Author Affiliations
  • 1Physics Department, University of Calabria, 87036 Rende (CS), Italy
  • 2Cnr—Istituto di Nanotecnologia- sede secondaria di Rende (CS), 87036 Rende (CS), Italy
  • 3e-mail:
  • 4e-mail:
  • show less
    DOI: 10.1364/PRJ.466396 Cite this Article Set citation alerts
    Nicola Pellizzi, Alfredo Mazzulla, Pasquale Pagliusi, Gabriella Cipparrone. Plasmon-enhanced rotational dynamics of anisotropic core-shell polymeric-metallic microparticles[J]. Photonics Research, 2022, 10(12): 2734 Copy Citation Text show less
    References

    [1] A. Ashkin. Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett., 24, 156-159(1970).

    [2] K. Dholakia, T. Čižmár. Shaping the future of manipulation. Nat. Photonics, 5, 335-342(2011).

    [3] S. E. S. Spesyvtseva, K. Dholakia. Trapping in a material world. ACS Photon., 3, 719-736(2016).

    [4] S. Corsetti, K. Dholakia. Optical manipulation: advances for biophotonics in the 21st century. J. Biomed. Opt., 26, 070602(2021).

    [5] D. Gao, W. Ding, M. Nieto-Vesperinas, X. Ding, M. Rahman, T. Zhang, C. T. Lim, C. W. Qiu. Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects. Light Sci. Appl., 6, e17039(2017).

    [6] J. Leach, H. Mushfique, R. Di Leonardo, M. Padgett, J. Cooper. An optically driven pump for microfluidics. Lab Chip, 6, 735-739(2006).

    [7] I. Williams, E. C. Oğuz, T. Speck, P. Bartlett, H. Löwen, C. P. Royall. Transmission of torque at the nanoscale. Nat. Phys., 12, 98-103(2016).

    [8] J. Glückstad, D. Palima. Light Robotics: Structure-Mediated Nanobiophotonics(2017).

    [9] A. Aubret, Q. Martinet, J. Palacci. Metamachines of pluripotent colloids. Nat. Commun., 12, 6398(2021).

    [10] S. Zhang, M. Elsayed, R. Peng, Y. Chen, Y. Zhang, J. Peng, W. Li, M. D. Chamberlain, A. Nikitina, S. Yu, X. Liu, S. L. Neale, A. R. Wheeler. Reconfigurable multi-component micromachines driven by optoelectronic tweezers. Nat. Commun., 12, 1(2021).

    [11] Y. Sun, S. Zhang, X. Wang, F. Nan, J. Yu, S. L. Neale. Light-driven microrobots: mechanisms and applications. Field-Driven Micro and Nanorobots for Biology and Medicine, 91-111(2022).

    [12] F. Han, J. A. Parker, Y. Yifat, C. Peterson, S. K. Gray, N. F. Scherer, Z. Yan. Crossover from positive to negative optical torque in mesoscale optical matter. Nat. Commun., 9, 1(2018).

    [13] M. Padgett, R. Bowman. Tweezers with a twist. Nat. Photonics, 5, 343-348(2011).

    [14] O. Brzobohaty, B. Brzobohaty, V. Karásek, L. Chvátal, P. Zemánek. Experimental demonstration of optical transport, sorting and self-arrangement using a ‘tractor beam. Nat. Photonics, 7, 123-127(2013).

    [15] M. Woerdemann, C. Alpmann, M. Esseling, C. Denz. Advanced optical trapping by complex beam shaping. Laser Photon. Rev., 7, 839-854(2013).

    [16] H. Rubinsztein-Dunlop, A. Forbes, M. V. Berry, M. R. Dennis, D. L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, T. Bauer. Roadmap on structured light. J. Opt., 19, 013001(2016).

    [17] Y. Yang, Y. X. Ren, M. Chen, Y. Arita, C. Rosales-Guzmán. Optical trapping with structured light: a review. Adv. Photon., 3, 034001(2021).

    [18] G. D. Bruce, P. Rodríguez-Sevilla, K. Dholakia. Initiating revolutions for optical manipulation: the origins and applications of rotational dynamics of trapped particles. Adv. Phys. X, 6, 1838322(2021).

    [19] M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop. Optical alignment and spinning of laser-trapped microscopic particles. Nature, 394, 348-350(1998).

    [20] T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop. Optical measurement of microscopic torques. J. Mod. Opt., 48, 405-413(2001).

    [21] Q. Sun, K. Dholakia, A. D. Greentree. Optical forces and torques on eccentric nanoscale core-shell particles. ACS Photon., 8, 1103-1111(2021).

    [22] R. A. Ramli, W. A. Laftah, S. Hashim. Core–shell polymers: a review. RSC Adv., 3, 15543-15565(2013).

    [23] F. M. Galogahi, Y. Zhu, H. An, N. T. Nguyen. Core-shell microparticles: generation approaches and applications. J. Sci. Adv. Mater. Devices, 5, 417-435(2020).

    [24] W. Li, L. Zhang, X. Ge, B. Xu, W. Zhang, L. Qu, C. H. Choi, J. Xu, A. Zhang, H. Lee, D. A. Weitz. Microfluidic fabrication of microparticles for biomedical applications. Chem. Soc. Rev., 47, 5646-5683(2018).

    [25] H. N. Yow, A. F. Routh. Formation of liquid core-polymer shell microcapsules. Soft Matter., 2, 940-949(2006).

    [26] Y. Liu, W. Zhang, H. Wang. Synthesis and application of core-shell liquid metal particles: a perspective of surface engineering. Mater. Horiz., 8, 56-77(2021).

    [27] V. Shahabadi, E. Madadi, D. Abdollahpour. Optimized anti-reflection core-shell microspheres for enhanced optical trapping by structured light beams. Sci. Rep., 11, 4996(2021).

    [28] Y. J. Zhang, P. M. Radjenovic, X. S. Zhou, H. Zhang, J. L. Yao, J. F. Li. Plasmonic core–shell nanomaterials and their applications in spectroscopies. Adv. Mater., 33, 2005900(2021).

    [29] N. Pellizzi, A. Mazzulla, P. Pagliusi, G. Cipparrone. Core-shell chiral polymeric-metallic particles obtained in a single step by concurrent light induced processes. J. Colloid Interface Sci., 606, 113-123(2022).

    [30] R. J. Hernández, A. Mazzulla, C. Provenzano, P. Pagliusi, G. Cipparrone. Chiral resolution of spin angular momentum in linearly polarized and unpolarized light. Sci. Rep., 5, 16926(2015).

    [31] S. Paparini, E. G. Virga. Nematic tactoid population. Phys. Rev. E, 103, 22707(2021).

    [32] A. B. Stilgoe, T. A. Nieminen, H. Rubinsztein-Dunlop. Controlled transfer of transverse orbital angular momentum to optically trapped birefringent microparticles. Nat. Photonics, 16, 346-351(2022).

    [33] S. G. Pietro Gucciardi, R. Gillibert, A. Magazzù, A. Callegari, D. Bronte-Ciriza, A. Foti, M. Grazia Donato, O. M. Maragò, G. Volpe, M. Lamy de La Chapelle, F. Lagarde, P. G. Gucciardi. Raman tweezers for tire and road wear micro- and nanoparticles analysis. Environ. Sci. Nano., 9, 145-161(2022).

    [34] H. Rubinsztein-Dunlop, T. A. Nieminen, M. E. J. Friese, N. R. Heckenberg. Optical trapping of absorbing particles. Adv. Quantum Chem., 30, 469-492(1998).

    [35] S. Sato, Y. Harada, Y. Waseda. Optical trapping of microscopic metal particles. Opt. Lett., 19, 1807-1809(1994).

    [36] K. C. Neuman, S. M. Block. Optical trapping. Rev. Sci. Instrum., 75, 2787(2004).

    [37] R. A. Beth. Mechanical detection and measurement of the angular momentum of light. Phys. Rev., 50, 115-125(1936).

    [38] S. H. Simpson. Inhomogeneous and anisotropic particles in optical traps: physical behaviour and applications. J. Quant. Spectrosc. Radiat. Transf., 146, 81-99(2014).

    [39] A. I. Bishop, T. A. Nieminen, N. R. Heckenberg, H. Rubinsztein-Dunlop. Optical microrheology using rotating laser-trapped particles. Phys. Rev. Lett., 92, 198104(2004).

    [40] S. H. Simpson, S. Hanna. Computational study of the optical trapping of ellipsoidal particles. Phys. Rev. A, 84, 053808(2011).

    [41] C. Zhang, H. Guo, J. Liu, Y. Zong, Z.-Y. Li. Ray-optics model for optical force and torque on a spherical metal-coated Janus microparticle. Photon. Res., 3, 265-274(2015).

    [42] C. Manzo, D. Paparo, L. Marrucci, I. Jánossy. Light-induced rotation of dye-doped liquid crystal droplets. Phys. Rev. E, 73, 051707(2006).

    [43] D. Lu, F. Gámez, P. Haro-González. Temperature effects on optical trapping stability. Micromachines, 12, 954(2021).

    Nicola Pellizzi, Alfredo Mazzulla, Pasquale Pagliusi, Gabriella Cipparrone. Plasmon-enhanced rotational dynamics of anisotropic core-shell polymeric-metallic microparticles[J]. Photonics Research, 2022, 10(12): 2734
    Download Citation