• Photonics Research
  • Vol. 10, Issue 3, 637 (2022)
Krishna Murari1、2、3、*, Giovanni Cirmi1、4, Hüseyin Cankaya1、4, Gregory J. Stein1, Benoit Debord5, Frederic Gérôme5, Felix Ritzkosky1, Fetah Benabid5, Oliver Muecke1、3, and Franz X. Kärtner1、2、4
Author Affiliations
  • 1Center for Free Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
  • 2Max-Planck Institute for Structure and Dynamics of Matter (MPSD), 22761 Hamburg, Germany
  • 3ELI-ALPS, ELI-HU Non-Profit Ltd., Szeged H-6728, Hungary
  • 4The Hamburg Center for Ultrafast Imaging & Department of Physics, University of Hamburg, 22761 Hamburg, Germany
  • 5GPPMM Group, XLIM Research Institute, UMR 7252 CNRS, University of Limoges, Limoges, France
  • show less
    DOI: 10.1364/PRJ.441674 Cite this Article Set citation alerts
    Krishna Murari, Giovanni Cirmi, Hüseyin Cankaya, Gregory J. Stein, Benoit Debord, Frederic Gérôme, Felix Ritzkosky, Fetah Benabid, Oliver Muecke, Franz X. Kärtner. Sub-50 fs pulses at 2050 nm from a picosecond Ho:YLF laser using a two-stage Kagome-fiber-based compressor[J]. Photonics Research, 2022, 10(3): 637 Copy Citation Text show less
    References

    [1] H. Pires, M. Baudisch, D. Sanchez, M. Hemmer, J. Biegert. Ultrashort pulse generation in the mid-IR. Prog. Quantum Electron., 43, 1-30(2015).

    [2] I. Jovanovic, G. Xu, S. Wandel. Mid-infrared laser system development for dielectric laser accelerators. Phys. Procedia, 52, 68-74(2014).

    [3] H. R. Reiss. Limits on tunneling theories of strong-field ionization. Phys. Rev. Lett., 101, 043002(2008).

    [4] S. Woutersen, U. Emmerichs, H. J. Bakker. Femtosecond mid-IR pump-probe spectroscopy of liquid water: evidence for a two-component structure. Science, 278, 658-660(1997).

    [5] A. H. Chin, J. M. Bakker, J. Kono. Ultrafast electroabsorption at the transition between classical and quantum response. Phys. Rev. Lett., 85, 3293-3296(2000).

    [6] S. Ghimire, A. D. DiChiara, E. Sistrunk, U. B. Szafruga, P. Agostini, L. F. DiMauro, D. A. Reis. Redshift in the optical absorption of ZnO single crystals in the presence of an intense midinfrared laser field. Phys. Rev. Lett., 107, 167407(2011).

    [7] S. Ghimire, A. D. DiChiara, E. Sistrunk, P. Agostini, L. F. DiMauro, D. A. Reis. Observation of high-order harmonic generation in a bulk crystal. Nat. Phys., 7, 138-141(2011).

    [8] O. D. Mücke. Isolated high-order harmonics pulse from two-color-driven Bloch oscillations in bulk semiconductors. Phys. Rev. B, 84, 081202(2011).

    [9] G. J. Stein, P. D. Keathley, P. Krogen, H. Liang, J. P. Siqueira, C.-L. Chang, C.-J. Lai, K.-H. Hong, G. M. Laurent, F. X. Kärtner. Water-window soft X-ray high-harmonic generation up to the nitrogen K-edge driven by a kHz, 2.1 μm OPCPA source. J. Phys. B, 49, 155601(2016).

    [10] J. Pupeikis, P.-A. Chevreuil, N. Bigler, L. Gallmann, C. R. Phillips, U. Keller. Water window soft X-ray source enabled by a 25 W few-cycle 22 μm OPCPA at 100 kHz. Optica, 7, 168-171(2020).

    [11] X. Ren, J. Li, Y. Yin, K. Zhao, A. Chew, Y. Wang, S. Hu, Y. Cheng, E. Cunningham, Y. Wu, M. Chini, Z. Chang. Attosecond light sources in the water window. J. Opt., 20, 023001(2018).

    [12] A. D. Shiner, C. Trallero-Herrero, N. Kajumba, H.-C. Bandulet, D. Comtois, F. Légaré, M. Giguère, J.-C. Kieffer, P. B. Corkum, D. M. Villeneuve. Wavelength scaling of high harmonic generation efficiency. Phys. Rev. Lett., 103, 073902(2009).

    [13] M. B. Gaarde, K. J. Schafer, A. Heinrich, J. Biegert, U. Keller. Large enhancement of macroscopic yield in attosecond pulse train–assisted harmonic generation. Phys. Rev. A, 72, 013411(2005).

    [14] F. Brizuela, C. M. Heyl, P. Rudawski, D. Kroon, L. Rading, J. M. Dahlström, J. Mauritsson, P. Johnsson, C. L. Arnold, A. L’Huillier. Efficient high-order harmonic generation boosted by below-threshold harmonics. Sci. Rep., 3, 1410(2013).

    [15] G. Orlando, P. P. Corso, E. Fiordilino, F. Persico. A three-colour scheme to generate isolated attosecond pulses. J. Phys. B, 43, 025602(2010).

    [16] A. Heinrich, W. Kornelis, M. P. Anscombe, C. P. Hauri, P. Schlup, J. Biegert, U. Keller. Enhanced VUV-assisted high harmonic generation. J. Phys. B, 39, S275-S281(2006).

    [17] Z. Chang. Enhancing keV high harmonic signals generated by long-wave infrared lasers. OSA Continuum, 2, 2131-2136(2019).

    [18] H. Du, L. Luo, X. Wang, B. Hu. Attosecond ionization control for broadband supercontinuum generation using a weak 400  nm few-cycle controlling pulse. Opt. Express, 20, 27226-27241(2012).

    [19] T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S. Brown, S. Alisauskas, G. Andriukaitis, T. Balciunas, O. D. Mucke, A. Pugzlys, A. Baltuska, B. Shim, S. E. Schrauth, A. Gaeta, C. Hernandez-Garcia, L. Plaja, A. Becker, A. Jaron-Becker, M. M. Murnane, H. C. Kapteyn. Bright coherent ultrahigh harmonics in the keV X-ray regime from mid-infrared femtosecond lasers. Science, 336, 1287-1291(2012).

    [20] S. Hädrich, M. Krebs, A. Hoffmann, A. Klenke, J. Rothhardt, J. Limpert, A. Tünnermann. Exploring new avenues in high repetition rate table-top coherent extreme ultraviolet sources. Light Sci. Appl., 4, e320(2015).

    [21] P. Malevich, G. Andriukaitis, T. Flöry, A. J. Verhoef, A. Fernández, S. Ališauskas, A. Pugžlys, A. Baltuška, L. H. Tan, C. F. Chua, P. B. Phua. High energy and average power femtosecond laser for driving mid-infrared optical parametric amplifiers. Opt. Lett., 38, 2746-2749(2013).

    [22] C. R. Phillips, J. Jiang, C. Mohr, A. C. Lin, C. Langrock, M. Snure, D. Bliss, M. Zhu, I. Hartl, J. S. Harris, M. E. Fermann, M. M. Fejer. Widely tunable midinfrared difference frequency generation in orientation-patterned GaAs pumped with a femtosecond Tm-fiber system. Opt. Lett., 37, 2928-2930(2012).

    [23] D. Brida, M. Marangoni, C. Manzoni, S. De Silvestri, G. Cerullo. Two-optical-cycle pulses in the mid-infrared from an optical parametric amplifier. Opt. Lett., 33, 2901-2903(2008).

    [24] V. Shumakova, P. Malevich, S. Ališauskas, A. Voronin, A. M. Zheltikov, D. Faccio, D. Kartashov, A. Baltuška, A. Pugzlys, A. Pugžlys. Multi-millijoule few-cycle mid-infrared pulses through nonlinear self-compression in bulk. Nat. Commun., 7, 12877(2016).

    [25] M. Seidel, G. Arisholm, J. Brons, V. Pervak, O. Pronin. All solid-state spectral broadening: an average and peak power scalable method for compression of ultrashort pulses. Opt. Express, 24, 9412-9428(2016).

    [26] K. Fritsch, M. Poetzlberger, V. Pervak, J. Brons, O. Pronin. All-solid-state multipass spectral broadening to sub-20 fs. Opt. Lett., 43, 4643-4646(2018).

    [27] M. Ueffing, S. Reiger, M. Kaumanns, V. Pervak, M. Trubetskov, T. Nubbemeyer, F. Krausz. Nonlinear pulse compression in a gas-filled multipass cell. Opt. Lett., 43, 2070-2073(2018).

    [28] V. Cardin, N. Thiré, S. Beaulieu, V. Wanie, F. Légaré, B. E. Schmidt. 0.42  TW 2-cycle pulses at 1.8  μm via hollow-core fiber compression. Appl. Phys. Lett., 107, 181101(2015).

    [29] G. Fan, T. Balčiūnas, T. Kanai, T. Flöry, G. Andriukaitis, B. E. Schmidt, F. Légaré, A. Baltuška. Hollow-core-waveguide compression of multi-millijoule CEP-stable 3.2  μm pulses. Optica, 3, 1308-1311(2016).

    [30] M. Nisoli, S. De Silvestri, O. Svelto. Generation of high energy 10 fs pulses by a new pulse compression technique. Appl. Phys. Lett., 68, 2793-2795(1996).

    [31] B. Debord, F. Amrani, L. Vincetti, F. Gérôme, F. Benabid. Hollow-core fiber technology: the rising of ‘gas photonics’. Fibers, 7, 16(2019).

    [32] F. Benabid, P. J. Roberts. Linear and nonlinear optical properties of hollow core photonic crystal fiber. J. Mod. Opt., 58, 87-124(2011).

    [33] Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, F. Benabid. Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber. Opt. Lett., 36, 669-671(2011).

    [34] F. Couny, F. Benabid, P. J. Roberts, P. S. Light, M. G. Raymer. Generation and photonic guidance of multi-octave optical-frequency combs. Science, 318, 1118-1121(2007).

    [35] Y. Y. Wang, X. Peng, M. Alharbi, C. F. Dutin, T. D. Bradley, F. Gérôme, M. Mielke, T. Booth, F. Benabid. Design and fabrication of hollow-core photonic crystal fibers for high-power ultrashort pulse transportation and pulse compression. Opt. Lett., 37, 3111-3113(2012).

    [36] B. Debord, M. Alharbi, L. Vincetti, A. Husakou, C. Fourcade-Dutin, C. Hoenninger, E. Mottay, F. Gérôme, F. Benabid. Multi-meter fiber-delivery and pulse self-compression of milli-Joule femtosecond laser and fiber-aided laser-micromachining. Opt. Express, 22, 10735-10746(2014).

    [37] B. Debord, M. Maurel, F. Gerome, L. Vincetti, A. Husakou, F. Benabid. Strong nonlinear optical effects in micro-confined atmospheric air. Photon. Res., 7, 1134-1141(2019).

    [38] H. Ren, A. Nazarkin, J. Nold, P. S. Russell. Quasi-phase-matched high harmonic generation in hollow core photonic crystal fibers. Opt. Express, 16, 17052-17059(2008).

    [39] O. H. Heckl, C. R. E. E. Baer, C. Kränkel, S. V. Marchese, F. Schapper, M. Holler, T. Südmeyer, J. S. Robinson, J. W. G. G. Tisch, F. Couny, P. Light, F. Benabid, U. Keller. High harmonic generation in a gas-filled hollow-core photonic crystal fiber. Appl. Phys. B, 97, 369-373(2009).

    [40] F. Emaury, C. F. Dutin, C. J. Saraceno, M. Trant, O. H. Heckl, Y. Y. Wang, C. Schriber, F. Gerome, T. Südmeyer, F. Benabid, U. Keller. Beam delivery and pulse compression to sub-50  fs of a modelocked thin-disk laser in a gas-filled Kagome-type HC-PCF fiber. Opt. Express, 21, 4986-4994(2013).

    [41] O. H. Heckl, C. J. Saraceno, C. R. E. Baer, T. Südmeyer, Y. Y. Wang, Y. Cheng, F. Benabid, U. Keller. Temporal pulse compression in a xenon-filled Kagome-type hollow-core photonic crystal fiber at high average power. Opt. Express, 19, 19142-19149(2011).

    [42] K. F. Mak, M. Seidel, O. Pronin, M. H. Frosz, A. Abdolvand, V. Pervak, A. Apolonski, F. Krausz, J. C. Travers, P. S. J. Russell. Compressing μJ-level pulses from 250  fs to sub-10  fs at 38-MHz repetition rate using two gas-filled hollow-core photonic crystal fiber stages. Opt. Lett., 40, 1238-1241(2015).

    [43] S. Hädrich, M. Kienel, M. Müller, A. Klenke, J. Rothhardt, R. Klas, T. Gottschall, T. Eidam, A. Drozdy, P. Jójárt, Z. Várallyay, E. Cormier, K. Osvay, A. Tünnermann, J. Limpert. Energetic sub-2-cycle laser with 216  W average power. Opt. Lett., 41, 4332-4335(2016).

    [44] T. Balciunas, C. Fourcade-Dutin, G. Fan, T. Witting, A. A. Voronin, A. M. Zheltikov, F. Gerome, G. G. Paulus, A. Baltuska, F. Benabid. A strong-field driver in the single-cycle regime based on self-compression in a kagome fibre. Nat. Commun., 6, 6117(2015).

    [45] S. A. Mousavi, H. C. H. Mulvad, N. V. Wheeler, P. Horak, J. Hayes, Y. Chen, T. D. Bradley, S. Alam, S. R. Sandoghchi, E. N. Fokoua, D. J. Richardson, F. Poletti. Nonlinear dynamic of picosecond pulse propagation in atmospheric air-filled hollow core fibers. Opt. Express, 26, 8866-8882(2018).

    [46] A. Benoît, B. Beaudou, M. Alharbi, B. Debord, F. Gérôme, F. Salin, F. Benabid. Over-five octaves wide Raman combs in high-power picosecond-laser pumped H2-filled inhibited coupling Kagome fiber. Opt. Express, 23, 14002-14009(2015).

    [47] K. Murari, G. J. Stein, H. Cankaya, B. Debord, F. Gérôme, G. Cirmi, O. D. Mücke, P. Li, A. Ruehl, I. Hartl, K.-H. Hong, F. Benabid, F. V. X. Kärtner. Kagome-fiber-based pulse compression of mid-infrared picosecond pulses from a Ho:YLF amplifier. Optica, 3, 816-822(2016).

    [48] K. Murari, H. Cankaya, P. Kroetz, G. Cirmi, P. Li, A. Ruehl, I. Hartl, F. X. Kärtner. Intracavity gain shaping in millijoule-level, high gain Ho:YLF regenerative amplifiers. Opt. Lett., 41, 1114-1117(2016).

    [49] J. M. Dudley, G. Genty, S. Coen. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys., 78, 1135-1184(2006).

    Krishna Murari, Giovanni Cirmi, Hüseyin Cankaya, Gregory J. Stein, Benoit Debord, Frederic Gérôme, Felix Ritzkosky, Fetah Benabid, Oliver Muecke, Franz X. Kärtner. Sub-50 fs pulses at 2050 nm from a picosecond Ho:YLF laser using a two-stage Kagome-fiber-based compressor[J]. Photonics Research, 2022, 10(3): 637
    Download Citation