• Infrared and Laser Engineering
  • Vol. 51, Issue 6, 20210970 (2022)
Muye Li1, Xuezong Yang1、2、*, Yuxiang Sun1, Zhenxu Bai3, and Yan Feng1、4
Author Affiliations
  • 1School of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
  • 2State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
  • 3Center for Advanced Laser Technology, Hebei University of Technology, Tianjin 300401, China
  • 4Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China
  • show less
    DOI: 10.3788/IRLA20210970 Cite this Article
    Muye Li, Xuezong Yang, Yuxiang Sun, Zhenxu Bai, Yan Feng. Single-frequency continuous-wave diamond Raman laser (Invited)[J]. Infrared and Laser Engineering, 2022, 51(6): 20210970 Copy Citation Text show less
    References

    [1] O Lux, S Sarang, R J Williams, et al. Single longitudinal mode diamond Raman laser in the eye-safe spectral region for water vapor detection. Optics Express, 24, 27812(2016).

    [2] Lux O, Rhee H, Fritsche H, et al. Barium nitrate Raman laser at 1.599 µm f CO2 detection[C]Allakhverdiev K R. XIX International Symposium on HighPower Laser Systems Applications, SPIE, 2013, 8677: 342–348.

    [3] X Yang, O Kitzler, D J Spence, et al. Diamond sodium guide star laser. Optics Letters, 45, 1898(2020).

    [4] Q Sheng, R Li, A J Lee, et al. A single-frequency intracavity Raman laser. Optics Express, 27, 8540(2019).

    [5] L R Taylor, Y Feng, D B Calia. 50 W CW visible laser source at 589 nm obtained via frequency doubling of three coherently combined narrow-band Raman fibre amplifiers. Optics Express, 18, 8540(2010).

    [6] X Yang, L Zhang, S Cui, et al. Sodium guide star laser pulsed at Larmor frequency. Optics Letters, 42, 4351(2017).

    [7] Y Duan, H Zhu, C Huang, et al. Potential sodium D2 resonance radiation generated by intra-cavity SHG of a c-cut Nd: YVO4 self-Raman laser. Optics Express, 19, 6333(2011).

    [8] J E Curtis, B A Koss, D G Grier. Dynamic holographic optical tweezers. Optics Communications, 207, 169-175(2002).

    [9] D J Wineland, W M Itano. Laser cooling of atoms. Physical Review A, 20, 1521-1540(1979).

    [10] R Yamamoto, J Kobayashi, T Kuno, et al. An ytterbium quantum gas microscope with narrow-line laser cooling. New Journal of Physics, 18, 023016(2016).

    [11] P T Greenland. Laser isotope separation. Contemporary Physics, 31, 405-424(1990).

    [12] A Steane. Quantum computing. Reports on Progress in Physics, 61, 117-173(1998).

    [13] L S Meng, P A Roos, J L Carlsten. Continuous-wave rotational Raman laser in H2. Optics Letters, 27, 1226-1228(2002).

    [14] H Rong, R Jones, A Liu, et al. A continuous-wave Raman silicon laser. Nature, 433, 725-728(2005).

    [15] J Shi, S Alam, M Ibsen. Highly efficient Raman distributed feedback fibre lasers. Optics Express, 20, 5082(2012).

    [16] C Y Lee, C C Chang, P H Tuan, et al. Cryogenically monolithic self-Raman lasers: Observation of single-longitudinal-mode operation. Optics Letters, 40, 1996(2015).

    [17] Liu Z, Men S, Cong Z, et al. Singlefrequency Nd: GGGBaWO4 Raman laser emitting at 1178.3 nm[C]Conference on Lasers ElectroOptics, 2016: SM3 M. 3.

    [18] S M Spuler, S D Mayor. Raman shifter optimized for lidar at a 1.5 μm wavelength. Applied Optics, 46, 2990-2995(2007).

    [19] Q Sheng, H Ma, R Li, et al. Recent progress on narrow-linewidth crystalline bulk Raman lasers. Results in Physics, 17, 103073(2020).

    [20] Mildren R P. Intrinsic Optical Properties of Diamond[M] Optical Engineering of Diamond. Weinheim, Germany: WileyVCH Verlag GmbH & Co. KGaA, 2013: 1–34.

    [21] R J Williams, J Nold, M Strecker, et al. Efficient Raman frequency conversion of high-power fiber lasers in diamond. Laser & Photonics Reviews, 9, 405-411(2015).

    [22] D J Spence. Spatial and spectral effects in continuous-wave intracavity Raman lasers. IEEE Journal on Selected Topics in Quantum Electronics, 21, 134-141(2015).

    [23] G M Bonner, J Lin, A J Kemp, et al. Spectral broadening in continuous-wave intracavity Raman lasers. Optics Express, 22, 7492-7502(2014).

    [24] Y R Shen, N Bloembergen. Theory of stimulated brillouin and raman scattering. Physical Review, 137, A1787(1965).

    [25] Y Guo, W Peng, J Su, et al. Influence of the pump scheme on the output power and the intensity noise of a single-frequency continuous-wave laser. Optics Express, 28, 5866(2020).

    [26] O Lux, S Sarang, O Kitzler, et al. Intrinsically stable high-power single longitudinal mode laser using spatial hole burning free gain. Optica, 3, 876(2016).

    [27] S Sarang, O Kitzler, O Lux, et al. Single-longitudinal-mode diamond laser stabilization using polarization-dependent Raman gain. OSA Continuum, 2, 1028(2019).

    [28] T W Hänsch, B Couillaud. Laser frequency stabilization by polarization spectroscopy of a reference cavity. Optics Communications, 35, 441-444(1980).

    [29] O Kitzler, J Lin, H M Pask, et al. Single-longitudinal-mode ring diamond Raman laser. Optics Letters, 42, 1229(2017).

    [30] Xuechen Cao, Jiao Wei, Pixian Jin, et al. Cavity resonance-enhanced watt-level single frequency 1240 nm Raman laser. Chinese Journal of Lasers, 48, 0501011(2021).

    [31] M Li, O Kitzler, D J Spence. Investigating single-longitudinal-mode operation of a continuous wave second Stokes diamond Raman ring laser. Optics Express, 28, 1738(2020).

    [32] K I Martin, W A Clarkson, D C Hanna. Self-suppression of axial mode hopping by intracavity second-harmonic generation. Optics Letters, 22, 375(1997).

    [33] X Yang, O Kitzler, D J Spence, et al. Single-frequency 620 nm diamond laser at high power, stabilized via harmonic self-suppression and spatial-hole-burning-free gain. Optics Letters, 44, 839(2019).

    [34] X Yang, Z Bai, D Chen, et al. Widely-tunable single-frequency diamond Raman laser. Optics Express, 29, 29449(2021).

    [35] H Lu, J Su, Y Zheng, et al. Physical conditions of single-longitudinal-mode operation for high-power all-solid-state lasers. Optics Letters, 39, 1117(2014).

    [36] R Casula, J-P Penttinen, A J Kemp, et al. 1.4 µm continuous-wave diamond Raman laser. Optics Express, 25, 31377-31383(2017).

    [37] Z Liu, S Men, Z Cong, et al. A pulsed single-frequency Nd: GGG/BaWO4 Raman laser. Laser Physics, 28, 045002(2018).

    [38] X L Zhang, L Li, J H Cui, et al. Single longitudinal mode and continuously tunable frequency Tm, Ho: YLF laser with two solid etalons. Laser Physics Letters, 7, 194-197(2010).

    [39] P G Zverev. The influence of temperature on Raman modes in YVO4 and GdVO4 crystals. Journal of Physics: Conference Series, 92, 012073(2007).

    [40] M S Liu, L A Bursill, S Prawer, et al. Temperature dependence of the first-order Raman phonon line of diamond. Physical Review B-Condensed Matter and Materials Physics, 61, 3391-3395(2000).

    [41] Granados E, Chrysalidis K, Fedosseev V N, et al. Monolithically integrated widely tunable singlefrequency diamond Raman lasers[C]Advanced Solid State Lasers, 2021: 3–4.

    CLP Journals

    [1] Zhiwei Lv, Zhongze Liu, Hui Chen, Duo Jin, Xin Hao, Wenqiang Fan, Yulei Wang, Zhenxu Bai. Review of multi-wavelength laser technology based on crystalline Raman conversion (invited)[J]. Infrared and Laser Engineering, 2023, 52(8): 20230420

    [2] Bingzheng Yan, Xikui Mu, Jiashuo An, Yaoyao Qi, Jie Ding, Zhenxu Bai, Yulei Wang, Zhiwei Lv. Advances in 2 μm single-longitudinal-mode all-solid-state pulsed lasers (cover paper·invited)[J]. Infrared and Laser Engineering, 2024, 53(2): 20230730

    [3] Zhenxu Bai, Xin Hao, Hao Zheng, Hui Chen, Yaoyao Qi, Jie Ding, Bingzheng Yan, Can Cui, Yulei Wang, Zhiwei Lv. Research progress of high-power free-space Raman amplification technology (invited)[J]. Infrared and Laser Engineering, 2023, 52(8): 20230337

    [4] Hao Zheng, Chen Zhao, Fei Zhang, Pengfei Li, Bingzheng Yan, Yulei Wang, Zhenxu Bai, Zhiwei Lv. Study on the longitudinal mode characteristic of idler wave in MgO:PPLN infrared optical parametric oscillator[J]. Infrared and Laser Engineering, 2023, 52(12): 20230378

    Muye Li, Xuezong Yang, Yuxiang Sun, Zhenxu Bai, Yan Feng. Single-frequency continuous-wave diamond Raman laser (Invited)[J]. Infrared and Laser Engineering, 2022, 51(6): 20210970
    Download Citation