• Advanced Photonics
  • Vol. 5, Issue 4, 046005 (2023)
Emil Marinov, Renato Juliano Martins, Mohamed Aziz Ben Youssef, Christina Kyrou, Pierre-Marie Coulon, and Patrice Genevet*
Author Affiliations
  • Université Côte d’Azur, CNRS, CRHEA, Valbonne, France
  • show less
    DOI: 10.1117/1.AP.5.4.046005 Cite this Article Set citation alerts
    Emil Marinov, Renato Juliano Martins, Mohamed Aziz Ben Youssef, Christina Kyrou, Pierre-Marie Coulon, Patrice Genevet. Overcoming the limitations of 3D sensors with wide field of view metasurface-enhanced scanning lidar[J]. Advanced Photonics, 2023, 5(4): 046005 Copy Citation Text show less
    References

    [1] H. N. Burns, C. G. Christodoulou, G. D. Boreman. System design of a pulsed laser rangefinder. Opt. Express, 30, 323-329(1991).

    [2] Y.-C. Chang et al. 2D beam steerer based on metalens on silicon photonics. Opt. Express, 29, 854-864(2021).

    [3] N. Li et al. A progress review on solid‐state LiDAR and nanophotonics‐based LiDAR sensors. Laser Photonics Rev., 16, 2100511(2022).

    [4] T. Badloe et al. Tunable metasurfaces: the path to fully active nanophotonics. Adv. Photonics Res., 2, 2000205(2021).

    [5] S. Lin, Y. Chen, Z. J. Wong. High-performance optical beam steering with nanophotonics. Nanophotonics, 11, 2617-2638(2022).

    [6] R. Juliano Martins et al. Metasurface-enhanced light detection and ranging technology. Nat. Commun., 13, 5724(2022).

    [7] I. Kim et al. Nanophotonics for light detection and ranging technology. Nat. Nanotechnol., 16, 508-524(2021).

    [8] IEEE Standard for Radar Definitions, IEEE Std 686-2017 (Revision of IEEE Std 686-2008), 1-54(2017).

    [9] Z. Dai et al. Requirements for automotive LiDAR systems. Sensors, 22, 7532(2022).

    [10] H. Shimizu, S. A. Lee, C. Y. She. High spectral resolution lidar system with atomic blocking filters for measuring atmospheric parameters. Appl. Opt., 22, 1373-1381(1983).

    [11] Y. Yong et al. A flat spectral Faraday filter for sodium lidar. Opt. Lett., 36, 1302-1304(2011).

    [12] C. M. Gittins, W. G. Lawrence, W. J. Marinelli. Frequency-agile bandpass filter for direct detection lidar receivers. Appl. Opt., 37, 8327-8335(1998).

    [13] R. R. Agishev, A. Comeron. Spatial filtering efficiency of monostatic biaxial lidar: analysis and applications. Appl. Opt., 41, 7516-7521(2002).

    [14] N. R. Lynam. Spectral filtering for vehicular driver assistance systems(2018).

    [15] U. Shahid. Vehicle camera with multiple spectral filters(2018).

    [16] M. Beer et al. Background light rejection in SPAD-based LiDAR sensors by adaptive photon coincidence detection. Sensors, 18, 4338(2018).

    [17] S. M. Patanwala et al. A high-throughput photon processing technique for range extension of SPAD-based LiDAR receivers. IEEE Open J. Solid-State Circuits Soc., 2, 12-25(2022).

    [18] K. Khuseynzada et al. Innovative photodetector for LiDAR systems(2022).

    [19] S. Royo, M. Ballesta-Garcia. An overview of lidar imaging systems for autonomous vehicles. Appl. Sci., 9, 4093(2019).

    [20] A. C. Boucouvalas. IEC 825-1 eye safety classification of some consumer electronic products, 13/1-13/6(1996).

    [21] High definition LiDAR HDL-64 datasheet(2007).

    [22] A technical introduction to Baraja Spectrum-Scan™(2021).

    [23] A. Ullrich. Resolving range ambiguities in high-repetition rate airborne light detection and ranging applications. J. Appl. Remote Sens., 6, 063552(2012).

    [24] H. Lu et al. An automatic range ambiguity solution in high-repetition-rate airborne laser scanner using priori terrain prediction. IEEE Geosci. Remote Sens. Lett., 12, 2232-2236(2015).

    [25] G. W. Stimson. Introduction to Airborne RADAR, 155-161(1998).

    [26] P. Rieger. Range ambiguity resolution technique applying pulse-position modulation in time-of-flight scanning lidar applications. Opt. Eng., 53, 061614(2014).

    [27] Y. Liang et al. 1550-nm time-of-flight ranging system employing laser with multiple repetition rates for reducing the range ambiguity. Opt. Express, 22, 4662-4670(2014).

    [28] Z. P. Li et al. Single-photon imaging over 200 km. Optica, 8, 344-349(2021).

    [29] G. Shen et al. Self-gating single-photon time-of-flight depth imaging with multiple repetition rates. Opt. Lasers Eng., 151, 106908(2022).

    [30] N. Levanon. Mitigating range ambiguity in high PRF radar using inter-pulse binary coding. IEEE Trans. Aerosp. Electron. Syst., 45, 687-697(2009).

    [31] N. Levanon, E. Mozeson. Radar Signals, 168-190(2004).

    [32] N. J. Krichel, A. McCarthy, G. S. Buller. Resolving range ambiguity in a photon counting depth imager operating at kilometer distances. Opt. Express, 18, 9192-9206(2010).

    [33] G. Kim, Y. Park. LIDAR pulse coding for high resolution range imaging at improved refresh rate. Opt. Express, 24, 23810-23828(2016).

    [34] T. Fersch, R. Weigel, A. Koelpin. A CDMA modulation technique for automotive time-of-flight LiDAR systems. IEEE Sens. J., 17, 3507-3516(2017).

    [35] F. R. K. Chung, J. A. Salehi, V. K. Wei. Optical orthogonal codes: design, analysis and applications. IEEE Trans. Inf. Theory, 35, 595-604(1989).

    [36] G. Kim, Y. Park. Suitable combination of direct intensity modulation and spreading sequence for LIDAR with pulse coding. Sensors, 18, 4201(2018).

    [37] K. Suresh et al. On self driving cars: an LED time of flight (ToF) based detection and ranging using various unipolar optical CDMA codes, 1-6(2019).

    [38] F.-W. Lo et al. 2-D optical-CDMA modulation with hard-limiting for automotive time-of-flight LIDAR. IEEE Photonics J., 13, 7200111(2021).

    [39] T. Fersch et al. A FPGA correlation receiver for CDMA encoded LiDAR signals, 289-292(2017).

    [40] G. Kim, J. Eom, Y. Park. Alien pulse rejection in concurrent firing LIDAR. Remote Sens., 14, 1129(2022).

    [41] G. Kim, Y. Park. Independent biaxial scanning light detection and ranging system based on coded laser pulses without idle listening time. Sensors, 18, 2943(2018).

    [42] N. Li et al. Large-area metasurface on CMOS-compatible fabrication platform: driving flat optics from lab to fab. Nanophotonics, 9, 3071-3087(2020).

    [43] X. Li et al. Influence of waveform characteristics on LiDAR ranging accuracy and precision. Sensors, 18, 4(2018).

    [44] H. Chung, O. D. Miller. High-NA achromatic metalenses by inverse design. Opt. Express, 28, 6945-6965(2020).

    [45] R. Paniagua-Dominguez et al. A metalens with a near-unity numerical aperture. Nano Lett., 18, 2124-2132(2018).

    [46] D. Sang et al. Toward high‐efficiency ultrahigh numerical aperture freeform metalens: from vector diffraction theory to topology optimization. Laser Photonics Rev., 16, 2200265(2022).

    [47] G.-C. Yang, W. C. Kwong. Performance comparison of multiwavelength CDMA and WDMA+CDMA for fiber-optic networks. IEEE Trans. Commun., 45, 1426-1434(1997).

    [48] A. Baier et al. Design study for a CDMA-based third-generation mobile radio system. IEEE J. Sel. Areas Commun., 12, 733-743(1994).

    [49] H. Ghafouri-Shiraz, M. M. Karbassian. Optical CDMA Networks: Principles, Analysis and Applications, 30-36(2012).

    [50] S.-P. Tseng et al. Bipolar optical code division multiple access techniques using a dual electro-optical modulator implemented in free-space optics communications. Sensors, 20, 3583(2020).

    [51] L. F. Rojas-Ochoa et al. Depolarization of backscattered linearly polarized light. J. Opt. Soc. Am. A, 21, 1799-1804(2004).

    [52] H. Atiq et al. Vehicle detection and shape recognition using optical sensors: a review, 223-227(2010).

    [53] J. Duan, A. Valentyna. Road edge detection based on LIDAR laser, 137-142(2015).

    [54] W. C. Kwong, P. A. Perrier, P. R. Prucnal. Performance comparison of asynchronous and synchronous code-division multipleaccess techniques for fiber-optic local area networks. IEEE Trans. Commun., 39, 1625-1634(1991).

    [55] J. G. Zhang. Strict optical orthogonal codes for purely asynchronous code-division multiple-access applications. Appl. Opt., 35, 6996-6999(1996).

    [56] P. Genevet et al. Recent advances in planar optics: from plasmonic to dielectric metasurfaces. Optica, 4, 139-152(2017).

    Emil Marinov, Renato Juliano Martins, Mohamed Aziz Ben Youssef, Christina Kyrou, Pierre-Marie Coulon, Patrice Genevet. Overcoming the limitations of 3D sensors with wide field of view metasurface-enhanced scanning lidar[J]. Advanced Photonics, 2023, 5(4): 046005
    Download Citation