• Chinese Optics Letters
  • Vol. 20, Issue 6, 063901 (2022)
Guodong Wang1, Qingqing Meng1, Hengli Han2, Xuan Li1, Yixiao Zhou1, Zihang Zhu1, Congrui Gao1, He Li1, and Shanghong Zhao1、*
Author Affiliations
  • 1College of Information and Navigation, Air Force Engineering University, Xi’an 710077, China
  • 2Chongqing Optoelectronics Research Institute, Chongqing 400060, China
  • show less
    DOI: 10.3788/COL202220.063901 Cite this Article Set citation alerts
    Guodong Wang, Qingqing Meng, Hengli Han, Xuan Li, Yixiao Zhou, Zihang Zhu, Congrui Gao, He Li, Shanghong Zhao. Photonic generation of switchable multi-format linearly chirped signals[J]. Chinese Optics Letters, 2022, 20(6): 063901 Copy Citation Text show less
    References

    [1] S. Pan, Y. Zhang. Microwave photonic radars. J. Lightwave Technol., 38, 5450(2020).

    [2] K.-Y. Kim, Y. Shin. Analysis on cross-correlation coefficient for survivability of chirp spread spectrum systems. IEEE Trans. Inf. Forensics Secur., 15, 1959(2020).

    [3] H. Chi, W. Chao, J. Yao. Photonic generation of wideband chirped microwave waveforms. IEEE J. Microwaves, 1, 787(2021).

    [4] D. Zhu, S. Pan. Broadband cognitive radio enabled by photonics. J. Lightwave Technol., 38, 3076(2020).

    [5] H. Zhang, W. Zou, J. Chen. Generation of a widely tunable linearly chirped microwave waveform based on spectral filtering and unbalanced dispersion. Opt. Lett., 40, 1085(2015).

    [6] M. H. Khan, H. Shen, Y. Xuan, L. Zhao, S. Xiao, D. E. Leaird, A. M. Weiner, M. Qi. Ultrabroad-bandwidth arbitrary radiofrequency waveform generation with a silicon photonic chip-based spectral shaper. Nat. Photonics, 4, 117(2010).

    [7] X. Li, S. Zhao, Y. Li, Z. Zhu, K. Qu, T. Lin, D. Hu. Linearly chirped waveform generation with large time-bandwidth product using sweeping laser and dual-polarization modulator. Opt. Commun., 410, 240(2018).

    [8] L. E. Ynoquio Herrera, R. M. Ribeiro, V. B. Jabulka, P. Tovar, J. Pierre von der Weid. Photonic generation and transmission of linearly chirped microwave pulses with high TBWP by self-heterodyne technique. J. Lightwave Technol., 36, 4408(2018).

    [9] A. Kanno, T. Kawanishi. Broadband frequency-modulated continuous-wave signal generation by optical modulation technique. J. Lightwave Technol., 32, 3566(2014).

    [10] Y. Zhang, X. Ye, Q. Guo, F. Zhang, S. Pan. Photonic generation of linearly-frequency-modulated waveforms with improved time-bandwidth product based on polarization modulation. J. Lightwave Technol., 35, 1821(2017).

    [11] A. Wang, J. Wo, X. Luo, Y. Wang, W. Cong, P. Du, J. Zhang, B. Zhao, J. Zhang, Y. Zhu, J. Lan, L. Yu. Ka-band microwave photonic ultra-wideband imaging radar for capturing quantitative target information. Opt. Express, 26, 20708(2018).

    [12] J. Shi, F. Zhang, Y. Zhou, S. Pan, Y. Wang, D. Ben. Photonic scanning receiver for wide-range microwave frequency measurement by photonic frequency octupling and in-phase and quadrature mixing. Opt. Lett., 45, 5381(2020).

    [13] P. Zhou, F. Zhang, S. Pan. Generation of linear frequency-modulated waveforms by a frequency-sweeping optoelectronic oscillator. J. Lightwave Technol., 36, 3927(2018).

    [14] T. Hao, Y. Liu, J. Tang, Q. Cen, W. Li, N. Zhu, Y. Dai, J. Capmany, J. Yao, M. Li. Recent advances in optoelectronic oscillators. Adv. Photonics, 2, 044001(2020).

    [15] W. Chen, D. Zhu, C. Xie, T. Zhou, X. Zhong, S. Pan. Photonics-based reconfigurable multi-band linearly frequency-modulated signal generation. Opt. Express, 26, 32491(2018).

    [16] Y. Zhang, C. Liu, Y. Zhang, K. Shao, C. Ma, L. Li, L. Sun, S. Li, S. Pan. Multi-functional radar waveform generation based on optical frequency-time stitching method. J. Lightwave Technol., 39, 458(2021).

    [17] Y. Li, A. Dezfooliyan, A. M. Weiner. Photonic synthesis of spread spectrum radio frequency waveforms with arbitrarily long time apertures. J. Lightwave Technol., 32, 3580(2014).

    [18] A. Rashidinejad, D. E. Leaird, A. M. Weiner. Ultrabroadband radio-frequency arbitrary waveform generation with high-speed phase and amplitude modulation capability. Opt. Express, 23, 12265(2015).

    [19] Y. Li, A. M. Weiner. Photonic-assisted error-free wireless communication with multipath pre-compensation covering 2–18 GHz. J. Lightwave Technol., 34, 4154(2016).

    [20] X. Li, S. Zhao, G. Wang, Y. Zhou. Photonic generation and application of a bandwidth multiplied linearly chirped signal with phase modulation capability. IEEE Access, 9, 82618(2021).

    Data from CrossRef

    [1] Jiading Li, Xiaoxiao Xue, Bofan Yang, Mian Wang, Shangyuan Li, Xiaoping Zheng. Broadband linear frequency-modulated waveform generation based on optical frequency comb assisted spectrum stitching. Optics Express, 30, 24145(2022).

    Guodong Wang, Qingqing Meng, Hengli Han, Xuan Li, Yixiao Zhou, Zihang Zhu, Congrui Gao, He Li, Shanghong Zhao. Photonic generation of switchable multi-format linearly chirped signals[J]. Chinese Optics Letters, 2022, 20(6): 063901
    Download Citation