• Photonics Research
  • Vol. 7, Issue 4, 478 (2019)
Cheng Zhang1, Jin Yang1, Wenkang Cao1, Wei Yuan1, Junchen Ke1, Liuxi Yang1, Qiang Cheng1、2, and Tiejun Cui1、3
Author Affiliations
  • 1State Key Laboratory of Millimeter Waves, Southeast University, Nanjing 210096, China
  • 2e-mail: qiangcheng@seu.edu.cn
  • 3e-mail: tjcui@seu.edu.cn
  • show less
    DOI: 10.1364/PRJ.7.000478 Cite this Article Set citation alerts
    Cheng Zhang, Jin Yang, Wenkang Cao, Wei Yuan, Junchen Ke, Liuxi Yang, Qiang Cheng, Tiejun Cui. Transparently curved metamaterial with broadband millimeter wave absorption[J]. Photonics Research, 2019, 7(4): 478 Copy Citation Text show less
    References

    [1] Y. Naito, K. Suetake. Application of ferrite to electromagnetic wave absorber and its characteristics. IEEE Trans. Microwave Theory Tech., 19, 65-72(1971).

    [2] S. Ohkoshi, S. Kuroki, S. Sakurai, K. Matsumoto, K. Sato, S. Sasaki. A millimeter-wave absorber based on gallium-substituted ε-iron oxide nanomagnets. Angew. Chem. Int. Ed., 46, 8392-8395(2007).

    [3] A. Namai, S. Kurahashi, H. Hachiya, K. Tomita, S. Sakurai, K. Matsumoto, Y. Goto, S. Ohkoshi. High magnetic permeability of ε-GaxFe2-xO3 magnets in the millimeter wave region. J. Appl. Phys., 107, 09A955(2010).

    [4] L. B. Kong, Z. W. Li, L. Liu, R. Huang, M. Abshinova, Z. H. Yang, C. B. Tang, P. K. Tan, C. R. Deng, S. Matitsine. Recent progress in some composite materials and structures for specific electromagnetic applications. Int. Mater. Rev., 58, 203-259(2013).

    [5] H. L. Lv, Y. H. Guo, Z. H. Yang, Y. Cheng, L. Y. P. Wang, B. S. Zhang, Y. Zhao, Z. C. J. Xu, G. B. Ji. A brief introduction to the fabrication and synthesis of graphene based composites for the realization of electromagnetic absorbing materials. J. Mater. Chem. C, 5, 491-512(2017).

    [6] T. J. Cui. Microwave metamaterials. Nat. Sci. Rev., 5, 134-136(2017).

    [7] T. J. Cui. Microwave metamaterials—from passive to digital and programmable controls of electromagnetic waves. J. Opt., 19, 084004(2017).

    [8] D. R. Smith, J. B. Pendry. Homogenization of metamaterials by field averaging. J. Opt. Soc. Am. B, 23, 391-403(2006).

    [9] N. I. Landy, S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla. Perfect metamaterial absorber. Phys. Rev. Lett., 100, 207402(2008).

    [10] Q. Cheng, T. J. Cui, W. X. Jiang, B. G. Cai. An omnidirectional electromagnetic absorber made of metamaterials. New J. Phys., 12, 063006(2010).

    [11] C. M. Watts, X. Liu, W. J. Padilla. Metamaterial electromagnetic wave absorbers. Adv. Mater., 24, OP98-OP120(2012).

    [12] Z. H. Jiang, S. Yun, F. Toor, D. H. Werner, T. S. Mayer. Conformal dual-band near-perfectly absorbing mid-infrared metamaterial coating. ACS Nano, 5, 4641-4647(2011).

    [13] R. Yahiaoui, J. P. Guillet, F. de Miollis, P. Mounaix. Ultra-flexible multiband terahertz metamaterial absorber for conformal geometry applications. Opt. Lett., 38, 4988-4990(2013).

    [14] H. Tao, C. M. Bingham, A. C. Strikwerda, D. Pilon, C. Shrekenhamer, N. I. Landy, K. Fan, X. Zhang, W. J. Padilla, R. D. Averitt. Highly flexible wide angle of incidence terahertz metamaterial absorber: design fabrication and characterization. Phys. Rev. B, 78, 241103(2008).

    [15] K. Iwaszczuk, A. C. Strikwerda, K. Fan, X. Zhang, R. D. Averitt, P. U. Jepsen. Flexible metamaterial absorbers for stealth applications at terahertz frequencies. Opt. Express, 20, 635-643(2012).

    [16] F. Zhang, S. Feng, K. Qiu, Z. Liu, Y. Fan, W. Zhang, Q. Zhao, J. Zhou. Mechanically stretchable and tunable metamaterial absorber. Appl. Phys. Lett., 106, 091907(2015).

    [17] Y. C. Fan, F. L. Zhang, Q. Zhao, Z. Y. Wei, H. Q. Li. Tunable terahertz coherent perfect absorption in a monolayer graphene. Opt. Lett., 39, 6269-6272(2014).

    [18] Y. Fan, Z. Liu, F. Zhang, Q. Zhao, Z. Wei, Q. Fu, J. Li, C. Gu, H. Li. Tunable mid-infrared coherent perfect absorption in a graphene meta-surface. Sci. Rep., 5, 13956(2015).

    [19] B. Wu, H. M. Tuncer, M. Naeem, B. Yang, M. T. Cole, W. I. Milne, Y. Hao. Experimental demonstration of a transparent graphene millimeter wave absorber with 28% fractional bandwidth at 140  GHz. Sci. Rep., 4, 4130(2014).

    [20] Y. Okano, S. Ogino, K. Ishikawa. Development of optically transparent ultrathin microwave absorber for ultrahigh-frequency RF identification system. IEEE Trans. Microw. Theory Tech., 60, 2456-2464(2012).

    [21] C. Zhang, Q. Cheng, J. Yang, J. Zhao, T. J. Cui. Broadband metamaterial for optical transparency and microwave absorption. Appl. Phys. Lett., 110, 143511(2017).

    [22] J. Zhao, C. Zhang, Q. Cheng, J. Yang, T. J. Cui. An optically transparent metasurface for broadband microwave antireflection. Appl. Phys. Lett., 112, 073504(2018).

    [23] D. W. Hu, J. Cao, W. Li, C. Zhang, T. L. Wu, Q. F. Li, Z. H. Chen, Y. L. Wang, J. G. Guan. Optically transparent broadband microwave absorption metamaterial by standing-up closed-ring resonators. Adv. Opt. Mater., 5, 1700109(2017).

    [24] T. Jang, H. Youn, Y. J. Shin, L. J. Guo. Transparent and flexible polarization-independent microwave broadband absorber. ACS Photon., 1, 279-284(2014).

    [25] Y. Shen, J. Q. Zhang, L. H. Shen, S. Sui, Y. Q. Pang, J. F. Wang, H. Ma, S. B. Qu. Transparent and broadband absorption-diffusion-integrated low-scattering metamaterial by standing-up lattice. Opt. Express, 26, 28363-28375(2018).

    [26] Y. Shen, J. Q. Zhang, L. H. Shen, S. Sui, Y. Q. Pang, J. F. Wang, H. Ma, S. B. Qu. Transparent absorption-diffusion-integrated water-based all-dielectric metasurface for broadband backward scattering reduction. J. Phys. D, 51, 485301(2018).

    [27] Y. Shen, J. Q. Zhang, Y. Q. Pang, J. F. Wang, H. Ma, S. B. Qu. Transparent broadband metamaterial absorber enhanced by water–substrate incorporation. Opt. Express, 26, 15665-15674(2018).

    [28] J. Sun, L. Liu, G. Dong, J. Zhou. An extremely broad band metamaterial absorber based on destructive interference. Opt. Express, 19, 21155-21162(2011).

    [29] Y. Shen, J. Q. Zhang, Y. Y. Meng, Z. L. Wang, Y. Q. Pang, J. F. Wang, H. Ma, S. B. Qu. Merging absorption bands of plasmonic structures via dispersion engineering. Appl. Phys. Lett., 112, 254103(2018).

    [30] S. Liu, H. Chen, T. J. Cui. A broadband terahertz absorber using multi-layer stacked bars. Appl. Phys. Lett., 106, 151601(2015).

    [31] B. Monacelli, J. B. Pryor, B. A. Munk, D. Kotter, G. D. Boreman. Infrared frequency selective surface based on circuit-analog square loop design. IEEE Trans. Anntenas Propag., 53, 745-752(2005).

    [32] D. S. Dong, J. Yang, Q. Cheng, J. Zhao, L. H. Gao, S. J. Ma, S. Liu, H. B. Chen, Q. He, W. W. Liu, Z. Fang, L. Zhou, T. J. Cui. Terahertz broadband low-reflection metasurface by controlling phase distributions. Adv. Opt. Mater., 3, 1405-1410(2015).

    [33] D. Y. Shchegolkov, A. K. Azad, J. F. O’Hara, E. I. Simakov. Perfect subwavelength fishnetlike metamaterial-based film terahertz absorbers. Phys. Rev. B, 82, 205117(2010).

    [34] P. K. Singh, K. A. Korolev, M. N. Afsar, S. Sonkusale. Single and dual band 77/95/110  GHz metamaterial absorbers on flexible polyimide substrate. Appl. Phys. Lett., 99, 264101(2011).

    [35] X. P. Shen, Y. Yang, Y. Zang, J. Gu, J. Han, W. Zhang, T. J. Cui. Triple-band terahertz metamaterial absorber: design, experiment, and physical interpretation. Appl. Phys. Lett., 101, 154102(2012).

    [36] H. Tao, N. I. Landy, C. M. Bingham, X. Zhang, R. D. Averitt, W. J. Padilla. A metamaterial absorber for the terahertz regime: design, fabrication and characterization. Opt. Express, 16, 7181-7188(2008).

    [37] F. Ding, Y. Cui, X. Ge, Y. Jin, S. He. Ultra-broadband microwave metamaterial absorber. Appl. Phys. Lett., 100, 103506(2012).

    [38] J. Zhu, Z. Ma, W. Sun, F. Ding, Q. He, L. Zhou, Y. Ma. Ultra-broadband terahertz metamaterial absorber. Appl. Phys. Lett., 105, 021102(2014).

    [39] X. Chen, B.-I. Wu, J. A. Kong, T. M. Grzegorczyk. Retrieval of the effective constitutive parameters of bianisotropic metamaterials. Phys. Rev. E, 71, 046610(2005).

    [40] X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, J. A. Kong. Robust method to retrieve the constitutive effective parameters of metamaterials. Phys. Rev. E, 70, 016608(2004).

    [41] D. M. Pozar. Microwave Engineering(1998).

    [42] B. A. Munk, P. Munk, J. Pryor. On designing Jaumann and circuit analog absorbers (CA absorbers) for oblique angle of incidence. IEEE Trans. Antennas Propag., 55, 186-193(2007).

    [43] S. Maci, M. Caiazzo, A. Cucini, M. Casaletti. A pole-zero matching method for EBG surfaces composed of a dipole FSS printed on a grounded dielectric slab. IEEE Trans. Antennas Propag., 53, 70-81(2005).

    CLP Journals

    [1] Yan Chen, Kejian Chen, Dajun Zhang, Shihao Li, Yeli Xu, Xiong Wang, Songlin Zhuang. Ultrabroadband microwave absorber based on 3D water microchannels[J]. Photonics Research, 2021, 9(7): 1391

    [2] Junyu Xiao, Ruiwen Xiao, Rongxuan Zhang, Zhixiong Shen, Wei Hu, Lei Wang, Yanqing Lu. Tunable terahertz absorber based on transparent and flexible metamaterial[J]. Chinese Optics Letters, 2020, 18(9): 092403

    Cheng Zhang, Jin Yang, Wenkang Cao, Wei Yuan, Junchen Ke, Liuxi Yang, Qiang Cheng, Tiejun Cui. Transparently curved metamaterial with broadband millimeter wave absorption[J]. Photonics Research, 2019, 7(4): 478
    Download Citation