• Laser & Optoelectronics Progress
  • Vol. 55, Issue 8, 81402 (2018)
Wang Qihan, Yao Qiangqiang, Feng Chi, Chen Xinyu, and Dong Yuan
Author Affiliations
  • [in Chinese]
  • show less
    DOI: 10.3788/lop55.081402 Cite this Article Set citation alerts
    Wang Qihan, Yao Qiangqiang, Feng Chi, Chen Xinyu, Dong Yuan. Analytical Model for Thermal Focal Length and Spherical Aberration on Beam Quality[J]. Laser & Optoelectronics Progress, 2018, 55(8): 81402 Copy Citation Text show less
    References

    [1] Cox L J. Solid-state laser engineering[J]. Optica Acta: International Journal of Optics, 1977, 24(9): 995-995.

    [2] Qu P F, Wang S Y, Guo Z, et al. Adaptive adjusting technique of thermal effect to laser beam quality[J]. Acta Optica Sinica, 2017, 37(5): 0514001.

    [3] Liu S, Song F, Cai H, et al. Effect of thermal lens on beam quality and mode matching in LD pumped Er Yb-codoped phosphate glass microchip laser[J]. Journal of Physics D: Applied Physics, 2008, 41(3): 035104.

    [4] Wang Y, Inoue K, Kan H, et al. Study on thermally induced depolarization of a probe beam by considering the thermal lens effect[J]. Journal of Physics D: Applied Physics, 2009, 42(23): 235108.

    [5] Schwarz J, Ramsey M, Headley D, et al. Thermal lens compensation by convex deformation of a flat mirror with variable annular force[J]. Applied Physics B, 2005, 82(2): 275-281.

    [6] Liu C. A birefringence-compensated two-rod Nd∶YAG laser operating in TEM00, mode with a CW 61 W output power[J]. Laser Physics, 2009, 19(12): 2155-2158.

    [7] Siegman A E. Analysis of laser beam quality degradation caused by quartic phase aberrations[J]. Applied Optics, 1993, 32(30): 5893-5901.

    [8] Liu B, Liu C, Shen L, et al. Beam quality management by periodic reproduction of wavefront aberrations in end-pumped Nd∶YVO4 laser amplifiers[J]. Optics Express, 2016, 24(8): 8988-8996.

    [9] Wang Y. Dynamic compensation of laser amplifier to beam quality[D].Hangzhou: Zhejiang University, 2015.

    [10] Neubert B J, Eppich B. Influences on the beam propagation ratio M2[J]. Optics Communications, 2005, 250(4): 241-251.

    [11] Zhang X, Su L K, Cai Q. Analysis of thermal effect and experimental test of beam wavefront aberration in all solid-state Nd∶YAG laser[J]. Acta Optica Sinica, 2010, 30(3): 802-807.

    [12] Zheng J A, Zhao S Z, Wang Q P, et al. Thermal lens measurement of LD-end-pumped solid state laser with stable resonator[J]. Chinese Journal of Lasers, 2001, 28(8): 717-720.

    [13] Yang Y M, Wen J G, Wang S Y, et al. The thermal lens focus of the end-pumped Nd∶YAG laser[J]. Acta Photonica Sinica, 2005, 34(12): 1769-1771.

    [14] Bonnefois A M, Gilbert M, Thro P Y, et al. Thermal lensing and spherical aberration in high-power transversally pumped laser rods[J]. Optics Communications, 2006, 259(1): 223-235.

    [15] Shen F, Jiang W H. The measurement error of wavefront phase with Shack-Hartmann wavefront sensor.[J]. Acta Optica Sinica, 2000, 20(5): 666-671.

    [16] Meng Q B, Qi Y J, Lu Z X, et al. Analysis of effect of ambient temperature variation on measurement accuracy ofShack-Hartmann wavefront sensor[J]. Chinese Journal of Lasers, 2016, 43(8): 0810001.

    Wang Qihan, Yao Qiangqiang, Feng Chi, Chen Xinyu, Dong Yuan. Analytical Model for Thermal Focal Length and Spherical Aberration on Beam Quality[J]. Laser & Optoelectronics Progress, 2018, 55(8): 81402
    Download Citation