• Acta Optica Sinica
  • Vol. 43, Issue 17, 1714002 (2023)
Ding Li1、2, Xudong Yu1、2、*, Guo Wei1、2, Baolun Yuan1、2, Chunfeng Gao1、2, Pengfei Zhang1、2, Guocheng Wang1、2, and Hui Luo1、2、**
Author Affiliations
  • 1College of Advanced Interdisciplinary Studies, National University of Defense Technology, Changsha 410073, Hunan, China
  • 2Nanhu Laser Laboratory, National University of Defense Technology, Changsha 410073, Hunan, China
  • show less
    DOI: 10.3788/AOS230855 Cite this Article Set citation alerts
    Ding Li, Xudong Yu, Guo Wei, Baolun Yuan, Chunfeng Gao, Pengfei Zhang, Guocheng Wang, Hui Luo. Development and Prospects of Long-Endurance Ring Laser Gyro Inertial Navigation System Technology[J]. Acta Optica Sinica, 2023, 43(17): 1714002 Copy Citation Text show less
    References

    [1] Gao B L, Li S T[M]. The ring laser gyro(1984).

    [2] Bian H W, Xu J N, He H Y et al. Information architecture and key issues of underwater PNT system[J]. Navigation Positioning and Timing, 9, 31-39(2022).

    [3] Xu J N. Analysis on underwater PNT system and key technologies[J]. Navigation Positioning and Timing, 4, 1-6(2017).

    [4] Jiang Y N[M]. Ring laser gyro(1985).

    [5] Killpatrick J E. Laser gyro dither random noise[J]. Proceedings of SPIE, 0487, 85-93(1984).

    [6] Killpatrick J E. Random bias for laser angular rate sensor[P].

    [7] Gao B L. The locking phenomenon of second kind in differential laser gyro[J]. Journal of National University of Defense Technology, 37-57(1982).

    [8] Qin Y Y[M]. Inertial Navigation(2014).

    [9] Heer C V. Interference of electromagnetic and matter waves in a nonpermanent gravitational field[J]. Bulletin of the American Physical Society, 6, 171(1961).

    [10] Macek W M, Davis D T M, Jr. Rotation rate sensing with traveling-wave ring lasers[J]. Applied Physics Letters, 2, 67-68(1963).

    [11] Savage P G. Blazing gyros: the evolution of strapdown inertial navigation technology for aircraft[J]. Journal of Guidance, Control, and Dynamics, 36, 637-655(2013).

    [12] Giovanni C S, Jr, Levinson E. Performance of a ring laser strapdown marine gyrocompass[J]. Navigation, 28, 311-341(1981).

    [13] Levinson E, Giovanni C S. Laser gyro potential for long endurance marine navigation[J]. IEEE Position Location and Navigation Symposium, 115-129(1980).

    [14] Yuan B L. Research on rotating inertial navigation system with four-frequency differential laser gyroscope[D](2007).

    [15] Yu X D. Research on some key technologies for single-axis rotation inertial navigation system with mechanically dithered ring laser gyroscope[D](2011).

    [16] Wei G. Research on some key technologies for double-axis rotation inertial navigation system with mechanically dithered ring laser gyroscope[D](2013).

    [17] Zhou Z H, Xu H G, Wu L H et al. Analysis and estimation for azimuth gyro drift of single-axis rotation SINS[J]. Journal of Chinese Inertial Technology, 21, 31-36(2013).

    [18] Yang J J, Cai S J, Yuan R et al. A dual-axis inertial navigation system rotation modulation method stabilised in the inertial coordinate system[J]. Navigation Positioning and Timing, 10, 57-64(2023).

    [19] Cai Q Z, Yang G L, Song N F et al. Analysis and calibration of the gyro bias caused by geomagnetic field in a dual-axis rotational inertial navigation system[J]. Measurement Science and Technology, 27, 105001(2016).

    [20] Zhao K, Hu X M, Liu B H. Long-endurance fiber optic gyroscope INS for ships and its development trends[J]. Journal of Chinese Inertial Technology, 30, 281-287(2022).

    [21] Poddar S, Kumar V, Kumar A. A comprehensive overview of inertial sensor calibration techniques[J]. Journal of Dynamic Systems, Measurement, and Control, 139, 011006(2017).

    [22] Rahimi H, Nikkhah A A. Improving the calibration process of inertial measurement unit for marine applications[J]. Navigation, 67, 763-774(2020).

    [23] Zhang H L, Wu Y X, Wu W Q et al. Improved multi-position calibration for inertial measurement units[J]. Measurement Science and Technology, 21, 015107(2010).

    [24] Camberlein L, Mazzanti F. Calibration technique for laser gyro strapdown inertial navigation systems[J]. Ortung Und Navigation, 5.0-5.13(1985).

    [25] Jiang Q Y, Tang J X, Han S L et al. Systematic calibration method based on 36-dimension Kalman filter for laser gyro SINS[J]. Infrared and Laser Engineering, 44, 1579-1586(2015).

    [26] Wang Z C, Fan H Y, Xie Y P et al. System-level calibration method for complex error coefficients of strapdown inertial navigation system[J]. Infrared and Laser Engineering, 51, 20210499(2022).

    [27] Gao P Y, Li K, Wang L et al. A self-calibration method for accelerometer nonlinearity errors in triaxis rotational inertial navigation system[J]. IEEE Transactions on Instrumentation and Measurement, 66, 243-253(2017).

    [28] Liu X Q, Zheng J M, Lu J Z et al. Reducing the effect of the accelerometer-slope bias error on the calibration error of a high-precision RLG INS system-level fitting method[J]. IEEE Transactions on Instrumentation and Measurement, 70, 9511009(2021).

    [29] Wang L, Wu W Q, Li G et al. Ring laser gyro G-sensitive misalignment calibration in linear vibration environments[J]. Sensors, 18, 601(2018).

    [30] Barantsev G O, Kozlov A V, Shaimardanov I K et al. Elastic dynamic torsion of a ring laser gyroscope mechanical dither and its effect on the accuracy of attitude determination[C](2021).

    [31] Barantsev G O, Kozlov A V, Shaimardanov I K et al. A model of the elastic dynamic torsion of a ring laser gyroscope mechanical dither and a method for its calibration[C](2022).

    [32] Seo Y B, Yu H, Ryu K et al. Analysis of gyro bias depending on the position of inertial measurement unit in rotational inertial navigation systems[J]. Sensors, 22, 8355(2022).

    [33] Wen Z Y, Yang G L, Cai Q Z et al. Modeling and calibration of the gyro–accelerometer asynchronous time in dual-axis RINS[J]. IEEE Transactions on Instrumentation and Measurement, 70, 3503117(2021).

    [34] Wang B, Ren Q, Deng Z H et al. A self-calibration method for nonorthogonal angles between gimbals of rotational inertial navigation system[J]. IEEE Transactions on Industrial Electronics, 62, 2353-2362(2015).

    [35] Deng Z H, Sun M, Wang B et al. Analysis and calibration of the nonorthogonal angle in dual-axis rotational INS[J]. IEEE Transactions on Industrial Electronics, 64, 4762-4771(2017).

    [36] Lin Y S, Miao L J, Zhou Z Q et al. A high-accuracy method for calibration of nonorthogonal angles in dual-axis rotational inertial navigation system[J]. IEEE Sensors Journal, 21, 16519-16528(2021).

    [37] Qin S Q, Huang Z S, Wang X S. Optical angular encoder installation error measurement and calibration by ring laser gyroscope[J]. IEEE Transactions on Instrumentation and Measurement, 59, 506-511(2010).

    [38] Zhao X X, Feng R J, Wu Y F et al. A complementary filter-based all-parameters estimation for triaxis gyroscopes and optical angular encoders with intrinsic eccentricity[J]. IEEE Sensors Journal, 21, 5060-5069(2021).

    [39] Li P, Wang H M. Dynamic error analysis and suppression method of strapdown inertial navigation unit angle of laser gyro[J]. Navigation Positioning and Timing, 9, 171-178(2022).

    [40] Luo L, Huang Y L, Chang L B et al. Research status and prospect of initial alignment of SINS[J]. Chinese Journal of Ship Research, 17, 301-313(2022).

    [41] Britting K R, Palsson T. Self-alignment techniques for strapdown inertial navigation systems with aircraft application[J]. Journal of Aircraft, 7, 302-307(1970).

    [42] Qin Y Y, Yan G M, Gu D Q et al. A clever way of SINS coarse alignment despite rocking ship[J]. Journal of Northwestern Polytechnical University, 23, 681-684(2005).

    [43] Wu M P, Wu Y X, Hu X P et al. Optimization-based alignment for inertial navigation systems: theory and algorithm[J]. Aerospace Science and Technology, 15, 1-17(2011).

    [44] Yan G M, Li S J, Gao W S et al. An improvement for SINS anti-rocking alignment under geographic latitude uncertainty[J]. Journal of Chinese Inertial Technology, 28, 141-146(2020).

    [45] Baziw J, Leondes C T. In-flight alignment and calibration of inertial measurement units - part I: general formulation[J]. IEEE Transactions on Aerospace and Electronic Systems, 439-449(1972).

    [46] Li Y, Xu X S, Wu B X. Gyrocompass self-alignment of SINS[J]. Journal of Chinese Inertial Technology, 16, 386-389(2008).

    [47] Han S L. Novel GPS/SINS integration architechture and systematic error compensation methods[D](2010).

    [48] Shi W C, Xu J N, Li D et al. Attitude estimation of SINS on underwater dynamic base with variational Bayesian robust adaptive Kalman filter[J]. IEEE Sensors Journal, 22, 10954-10964(2022).

    [49] Guo S L, Wu M, Xu J N et al. Adaptive fading Kalman filter and its application in SINS initial alignment[J]. Geomatics and Information Science of Wuhan University, 43, 1667-1672, 1680(2018).

    [50] Wu M, Guo S L, Xu J N. Strong tracking EKF and its application in SINS alignment[J]. Journal of Naval University of Engineering, 31, 12-16, 38(2019).

    [51] Zhu B, Li X, Liu Q et al. Robust Kalman filter and its application in underwater intergrated navigation[J]. Navigation Positioning and Timing, 8, 96-103(2021).

    [52] Yan G M, Yan W S, Xu D M. Application of simplified UKF in SINS initial alignment for large misalignment angles[J]. Journal of Chinese Inertial Technology, 16, 253-264(2008).

    [53] Zhu B, Xu J N, Wu M et al. Robust adaptive UKF approach for underwater moving base initial alignment[J]. Chinese Journal of Scientific Instrument, 39, 73-80(2018).

    [54] Di J B, Chang L B. SINS linear initial alignment under quasi-static conditions with large misalignment[J]. Navigation Positioning and Timing, 9, 56-63(2022).

    [55] Barrau A. Non-linear state error based extended Kalman filters with applications to navigation[D](2015).

    [56] Chang L B, Luo Y R. Log-linear error state model derivation without approximation for INS[J]. IEEE Transactions on Aerospace and Electronic Systems, 59, 2029-2035(2023).

    [57] Yu X D, Long X W, Wang Y et al. Research on multi-position alignment in single-axial rotation inertial navigation system with ring laser gyroscope[J]. Chinese Journal of Sensors and Actuators, 24, 824-828(2011).

    [58] Wei D, Li S H, Fu Q W. A new initial alignment scheme for dual-axis rotational inertial navigation system[J]. IEEE Transactions on Instrumentation and Measurement, 71, 8503010(2022).

    [59] Xia J H, Cheng G D, Ji C P. Study on the influence of the deflections of the vertical on the in-flight alignment heading error[J]. Chinese Journal of Sensors and Actuators, 30, 566-569(2017).

    [60] An W, Xu J N, Wu M et al. Influence and compensation of vertical deflection on SINS attitude alignment[J]. Journal of Naval University of Engineering, 32, 55-60(2020).

    [61] Hao S W, Zhang Z L, Zhou Z F et al. Relative estimation method of DOV based on double-alignment of SINS[J]. IEEE Geoscience and Remote Sensing Letters, 19, 8030105(2022).

    [62] Hao S W, Zhang Z L, Zhou Z F et al. Analysis of DOV estimation in initial alignment based on Single-axis rotating SINS[J]. Measurement, 204, 112047(2022).

    [63] Levinson E, Majure R. Accuracy enhancement techniques applied to the marine ring laser inertial navigator (MARLIN)[J]. Navigation, 34, 64-86(1987).

    [64] Levinson E, Ter Horst J, Willcocks M. The next generation marine inertial navigator is here now[C], 121-127(2002).

    [65] Yuan B L, Liao D, Han S L. Error compensation of an optical gyro INS by multi-axis rotation[J]. Measurement Science and Technology, 23, 025102(2012).

    [66] Ji Z N, Liu C, Cai S J et al. Improved sixteen-sequence rotation scheme for dual-axis SINS[J]. Journal of Chinese Inertial Technology, 21, 46-50(2013).

    [67] Zha F, Chang L B, He H Y. Comprehensive error compensation for dual-axis rotational inertial navigation system[J]. IEEE Sensors Journal, 20, 3788-3802(2020).

    [68] Wei Q S, Zha F, Chang L B. Novel rotation scheme for dual-axis rotational inertial navigation system based on body diagonal rotation of inertial measurement unit[J]. Measurement Science and Technology, 33, 095105(2022).

    [69] Wang Z L, Yin H L, Wang D. Rotating scheme designing for two-axis rotating laser gyro inertial navigation system[J]. Ship Science and Technology, 35, 114-120(2013).

    [70] Li Q H, Li K, Liang W W. A dual-axis rotation scheme for long-endurance inertial navigation systems[J]. IEEE Transactions on Instrumentation and Measurement, 71, 8503510(2022).

    [71] Fan H Y, Xie Y P, Wang Z C et al. A unified scheme for rotation modulation and self-calibration of dual-axis rotating SINS[J]. Measurement Science and Technology, 32, 115113(2021).

    [72] Xie Y P, Fan H Y, Wang Z C et al. Optimization design of rotation scheme for dual-axis rotation-modulation strapdown inertial navigation System[J]. Journal of Chinese Inertial Technology, 29, 421-427, 436(2021).

    [73] Yuan B L, Rao G Y. On the theory of optical gyro rotating inertial navigation system[J]. Journal of National University of Defense Technology, 28, 76-80(2006).

    [74] Adams G, Gokhale M. Fiber Optic Gyro based precision navigation for submarines[C], 4384(2000).

    [75] Heckman D W, Baretela L M. Improved affordability of high precision submarine inertial navigation by insertion of rapidly developing fiber optic gyro technology[C], 404-410(2002).

    [76] Yu X D, Fan H Y, Wang Z C et al. Three-axis rotation modulation method of strapdown inertial navigation system based on geocentric inertial system[P].

    [77] Liu J C, Lou G Y, Zhao X M et al[P]. Rotation modulation method and device, equipment and storage medium.

    [78] Keller J. Sperry Marine to build AN/WSN-7 shipboard navigation systems as navy waits for new replacement[J]. Military & Aerospace Electronics, 32(2017).

    [79] Bird J S, McMillan J C. A dual inertial integrated navigation system[C], 373-382(1998).

    [80] Tan X J, Hong G, Li J Q et al. Development and implementation of dual-strapdown inertial redundant technology in CZ-2D launch vehicle[J]. Aerospace Shanghai, 33, 1-9(2016).

    [81] Li J, Zhang H H, Zhao Y et al. In-flight calibration of the gyros of the Chang'E-3 lunar lander[J]. Scientia Sinica: Technologica, 44, 582-588(2014).

    [82] Zhang H H, Li J, Guan Y F et al. Autonomous navigation for powered descent phase of Chang'E-3 lunar lander[J]. Control Theory & Applications, 31, 1686-1694(2014).

    [83] Wang Y Y, Ma Y P, Cheng W M et al. Discussion on the scheme of dual inertial navigation autonomous positioning system[J]. Navigation and Control, 10, 69-70, 45(2011).

    [84] Xiao X, Lu J R, Zhang Y Y et al. On-line calibration and fault-tolerant estimation feedback strategy of asymmetric redundant inertial navigation system[J]. Journal of Chinese Inertial Technology, 30, 288-295(2022).

    [85] Li Z W, Cheng Y M, Zhang Y C et al. Relative navigation method based on fault-tolerant inertial network[J]. Journal of Chinese Inertial Technology, 31, 171-178(2023).

    [86] Cheng J H, Li R B, Liu G et al. State decision method of airborne redundant inertial navigation system based on set-valued decision[J]. Journal of Chinese Inertial Technology, 30, 553-560(2022).

    [87] Liu W R, Wang N, Liu G B et al. Integration navigation method of dual INS[J]. Journal of Chinese Inertial Technology, 22, 1-4, 13(2014).

    [88] Liu W R, Song G L, Sun W Q et al. High-accuracy transfer alignment method of double master INSs to slave INS[J]. Journal of Chinese Inertial Technology, 24, 561-564, 570(2016).

    [89] Wang L, Wu W Q, Wei G et al. Dual marine INS joint rotation and modulation for cooperative positioning and error parameter estimation[J]. Journal of Chinese Inertial Technology, 25, 599-605(2017).

    [90] Wang L, Wu W Q, Wei G et al. Positioning information fusion for dual marine INSs based on grid frame[J]. Journal of Chinese Inertial Technology, 26, 141-148(2018).

    [91] Han H, Wang L, Wang M. A dynamic gyro scale factor error calibration method for RINSs[J]. IEEE Sensors Journal, 21, 20817-20823(2021).

    [92] Wang M, Wang L, Han H. Research on improving heading and attitudes accuracy by online calibration of errors based on multi-RINSs joint rotation modulation[J]. IEEE Sensors Journal, 22, 4503-4513(2022).

    [93] Cui J R, Wu W Q, Ma T F et al. Self-correction method of scale factor error of fiber optic gyroscope with dual inertial navigation and rotary modulation[J]. Journal of Chinese Inertial Technology, 30, 561-568(2022).

    [94] Liang Z H, Luo H, Li D et al. All-parameter online calibration algorithm based on the collaboration between dual INSs[J]. Journal of Chinese Inertial Technology, 31, 319-326, 334(2023).

    [95] Zhou T, Shi G X, Hu H F et al. Precision control technology in IMU redundancy management for manned launch vehicle[J]. Missiles and Space Vehicles, 59-64(2022).

    [96] Pejsa A J. Optimum skewed redundant inertial navigators[J]. AIAA Journal, 12, 899-902(1974).

    [97] Jafari M, Roshanian J. Optimal redundant sensor configuration for accuracy and reliability increasing in space inertial navigation systems[J]. Journal of Navigation, 66, 199-208(2013).

    [98] Cheng J H, Dong J L, Chen D D. Symmetrical and sideling redundancy configuration scheme of SINS using four gyroscopes[J]. Transducer and Microsystem Technologies, 34, 16-19, 27(2015).

    [99] Yuan Y X, Zou B. Optimization of redundant configuration scheme for vehicle inertial sensors with high reliability[J]. Journal of Harbin Engineering University, 39, 1369-1375(2018).

    [100] Wang B, Shen L L, Shao H B et al. Research on high-precision RIMU configuration optimization design and application[J]. Navigation Positioning and Timing, 6, 33-40(2019).

    [101] Guo J G, Wang Y P, Zheng W. Study on data fusion for the 12-sensor redundant strapdown inertial navigation system[J]. Navigation Positioning and Timing, 6, 41-49(2019).

    [102] Gelb A. Geodetic and geophysical uncertainties - Fundamental limitations on terrestrial inertial navigation[C], 847(1968).

    [103] Peshekhonov V G. Problem of the vertical deflection in high-precision inertial navigation[J]. Gyroscopy and Navigation, 11, 255-262(2020).

    [104] Weng H N, Li P F, Gao F et al. Damping suppression method for gravity disturbance of high-precision inertial navigation system[J]. Journal of Chinese Inertial Technology, 25, 141-145(2017).

    [105] Tie J B, Wu M P, Cai S K et al. Gravity disturbance calculation method based on Earth Gravitational Model 2008[J]. Journal of Chinese Inertial Technology, 25, 624-629(2017).

    [106] Chang L B, Qin F J, Wu M P. Gravity disturbance compensation for inertial navigation system[J]. IEEE Transactions on Instrumentation and Measurement, 68, 3751-3765(2019).

    [107] Chang L B, Qin F J, Zha F. Gravity disturbance compensation for single-axis rotary-modulation strapdown inertial navigation system[J]. Navigation Positioning and Timing, 5, 12-16(2018).

    [108] Weng J, Liu J N, Jiao M X et al. Analysis and on-line compensation of gravity disturbance in a high-precision inertial navigation system[J]. GPS Solutions, 24, 1-8(2020).

    [109] Wang J, Yang G L, Li X Y et al. Application of the spherical harmonic gravity model in high precision inertial navigation systems[J]. Measurement Science and Technology, 27, 095103(2016).

    [110] Gao D Y, Hu B Q, Qin F J et al. A real-time gravity compensation method for INS based on BPNN[J]. IEEE Sensors Journal, 21, 13584-13593(2021).

    [111] Yan G M, Dai C J, Chen R T. The influence of earth’s rotation model error on positioning accuracy of high-performance INS[J]. Journal of Chinese Inertial Technology, 30, 154-158, 167(2022).

    [112] Dai C J, Yan G M, Yang X K. Analysis of the influence of sun-moon perturbation on high precision inertial navigation system[C](2022).

    Ding Li, Xudong Yu, Guo Wei, Baolun Yuan, Chunfeng Gao, Pengfei Zhang, Guocheng Wang, Hui Luo. Development and Prospects of Long-Endurance Ring Laser Gyro Inertial Navigation System Technology[J]. Acta Optica Sinica, 2023, 43(17): 1714002
    Download Citation