• Chinese Journal of Quantum Electronics
  • Vol. 40, Issue 4, 447 (2023)
QI Zhiming1 and LIANG Wenyao2、*
Author Affiliations
  • 1The Open University of Guangdong (Guangdong Polytechnic Institute), Guangzhou 510091, China
  • 2School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China
  • show less
    DOI: 10.3969/j.issn.1007-5461.2023.04.003 Cite this Article
    Zhiming QI, Wenyao LIANG. Influence of beam polarizations on holographic fabrication of compound photonic crystals[J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 447 Copy Citation Text show less
    References

    [1] Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics[J]. Physical Review Letters, 58, 2059-2062(1987).

    [2] John S. Strong localization of photons in certain disordered dielectric superlattices[J]. Physical Review Letters, 58, 2486-2489(1987).

    [3] Chen M, Wan T, Wang Z et al. One-dimensional magnetic photonic crystal structures with wide absolute bandgaps[J]. Acta Physica Sinica, 66, 014204(2017).

    [4] Gan L, Li Z Y. Photonic crystal cavities and integrated optical devices[J]. Science China Physics, Mechanics & Astronomy, 58, 114203(2015).

    [5] Yuan J, Shu J, Jiang L Y. Multifunctional beam steering via switchable negative refraction, self-collimation, and zero refraction effects in conventional and annular photonic crystals[J]. Optics Express, 28, 5367-5377(2020).

    [6] Fei H M, Yan S, Xu Y C et al. Photonic crystal heterostructure with self-collimation effect for broad-band asymmetric optical transmission[J]. Acta Physica Sinica, 69, 184214(2020).

    [7] Liang W Y, Chen J F, Li Z Y. Electrically controlled beam steering with wide deflection angles in liquid crystal photonic crystals[J]. Journal of Optics, 20, 075106(2018).

    [8] Zhuang S N, Chen J F, Liang W Y et al. Zero GVD slow-light originating from a strong coupling of one-way modes in double-channel magneto-optical photonic crystal waveguides[J]. Optics Express, 29, 2478-2487(2021).

    [9] Fang H M, Tian M, Chang S Q et al. Optical absorption properties in one-dimensional graphene-based photonic crystals[J]. Chinese Journal of Quantum Electronics, 35, 589-593(2018).

    [10] Qi Z M. Research on computer simulations of two-dimensional complex microstructures[J]. Journal of Shenyang Normal University (Natural Science Edition), 37, 138-142(2019).

    [11] Feng Z F, Wang Y Q, Zhang D Z et al. Implementation of complete band gap in 2-D photonic crystals using complex unit cell[J]. Journal of Beijing University of Technology, 30, 390-392(2004).

    [12] Jiang J Q, Rosales-Guzmán C, Zhu Z H. Perfect flattop vortex beams[J]. Chinese Journal of Quantum Electronics, 39, 136-141(2022).

    [13] Mao W D, Zhong Y C, Dong J W et al. Crystallography of two-dimensional photonic lattices formed by holography of three noncoplanar beams[J]. Journal of the Optical Society of America B, 22, 1085-1091(2005).

    [14] Lü H, Zhao Q L, Zhang Q Y et al. Fabrication of two-dimensional superposed microstructure by interference lithography[J]. Applied Optics, 51, 302-305(2012).

    [15] Leibovici M C R, Gaylord T K. Performance simulation of 2D photonic-crystal devices fabricated by pattern-integrated interference lithography[J]. Optics Letters, 39, 3798-3801(2014).

    [16] Lü H, You K, Lan Y Y et al. Fabrication of two-dimensional micro-nano photonic structures by symmetry-lost beams interference[J]. Acta Physica Sinica, 66, 217801(2017).

    [17] Qi Z M, Liang W Y, Chen W H. Computer simulation and design of real-time holographic fabrication of microstructures[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 53, 69-73(2014).

    [18] Sun X H, Wu Y L, Liu W et al. Fabrication of ten-fold photonic quasicrystalline structures[J]. AIP Advances, 5, 057108(2015).

    [19] Dhuey S, Testini A, Koshelev A et al. Three-dimensional woodpile photonic crystals for visible light applications[J]. Journal of Physics Communications, 1, 015004(2017).

    [20] Yablonovitch E, Gmitter T J, Leung K M. Photonic band structure: The face-centered-cubic case employing nonspherical atoms[J]. Physical Review Letters, 67, 2295-2298(1991).

    [21] Jin C J, McLachlan M A, McComb D W et al. Template-assisted growth of nominally cubic (100)-oriented three-dimensional crack-free photonic crystals[J]. Nano Letters, 5, 2646-2650(2005).

    [22] Pang Y K, Lee J, Lee H et al. Chiral microstructures (spirals) fabrication by holographic lithography[J]. Optics Express, 13, 7615-7620(2005).

    [23] Liang G Q, Mao W D, Zou H et al. Holographic formation of large area split-ring arrays for magnetic metamaterials[J]. Journal of Modern Optics, 55, 1463-1472(2008).

    [24] Liang W Y, He R B, Lin D R et al. Influence of beam polarizations on holographic fabrication of triangular photonic crystals[J]. Laser & Optoelectronics Progress, 53, 091601(2016).

    Zhiming QI, Wenyao LIANG. Influence of beam polarizations on holographic fabrication of compound photonic crystals[J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 447
    Download Citation