• Chinese Journal of Quantum Electronics
  • Vol. 40, Issue 4, 447 (2023)
QI Zhiming1 and LIANG Wenyao2、*
Author Affiliations
  • 1The Open University of Guangdong (Guangdong Polytechnic Institute), Guangzhou 510091, China
  • 2School of Physics and Optoelectronics, South China University of Technology, Guangzhou 510640, China
  • show less
    DOI: 10.3969/j.issn.1007-5461.2023.04.003 Cite this Article
    Zhiming QI, Wenyao LIANG. Influence of beam polarizations on holographic fabrication of compound photonic crystals[J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 447 Copy Citation Text show less
    (a) The beam configuration for compound PCs. (b) The projected beam configuration in xoy plane, and k1'~ k4' are the projected wave vectors
    Fig. 1. (a) The beam configuration for compound PCs. (b) The projected beam configuration in xoy plane, and k1'~ k4' are the projected wave vectors
    Simulation results for four different combinations of three-beam configuration. (a) (k1, k2, k3), parallelogram lattice;(b) (k1, k2, k4), rectangular lattice; (c) (k1, k3, k4), parallelogram lattice; (d) (k2, k3, k4), rectangular lattice
    Fig. 2. Simulation results for four different combinations of three-beam configuration. (a) (k1, k2, k3), parallelogram lattice;(b) (k1, k2, k4), rectangular lattice; (c) (k1, k3, k4), parallelogram lattice; (d) (k2, k3, k4), rectangular lattice
    Simulation results for different polarization degrees of γ1. (a) γ1=0, V=1; (b) γ1=0.5, V=0.9911;(c) γ1=1, V=0.9792; (d) γ1=106, V=0.9608
    Fig. 3. Simulation results for different polarization degrees of γ1. (a) γ1=0, V=1; (b) γ1=0.5, V=0.9911;(c) γ1=1, V=0.9792; (d) γ1=106, V=0.9608
    Simulation results for different rotation angles of β1. (a) β1=0°, V=1; (b) β1=45°, V=0.9252; (c) β1=90°, V=0.9417; (d) β1=135°, V=0.9464
    Fig. 4. Simulation results for different rotation angles of β1. (a) β1=0°, V=1; (b) β1=45°, V=0.9252; (c) β1=90°, V=0.9417; (d) β1=135°, V=0.9464
    Simulation results for different polarization angles. "Neighbor" case (γ3=γ4=γ34): (a1) γ34=0, V=1; (a2) γ34=0.5, V=0.9670; (a3) γ34=1, V=0.9750; (a4) γ34=106, V=0.8664. "Interval" case (γ2=γ4=γ24): (b1) γ24=0, V=1; (b2) γ24=0.5, V=0.9840; (b3) γ24=1, V=0.9694; (b4) γ24=106, V=0.9798
    Fig. 5. Simulation results for different polarization angles. "Neighbor" case (γ3=γ4=γ34): (a1) γ34=0, V=1; (a2) γ34=0.5, V=0.9670; (a3) γ34=1, V=0.9750; (a4) γ34=106, V=0.8664. "Interval" case (γ2=γ4=γ24): (b1) γ24=0, V=1; (b2) γ24=0.5, V=0.9840; (b3) γ24=1, V=0.9694; (b4) γ24=106, V=0.9798
    Simulation results for different polarization angles. "Neighbor" case ( β3=β4=β34 ): (a1) β34=0, V=1; (a2) β34=45°, V=0.9013; (a3) β34=90°, V=0.8786; (a4) β34=135°, V=0.9337. "Interval" case ( β2=β4=β24 ): (b1) β24=0°, V=1; (b2) β24=45°, V=0.7812; (b3) β24=90°, V=0.8739; (b4) β24=135°, V=0.8417
    Fig. 6. Simulation results for different polarization angles. "Neighbor" case ( β3=β4=β34 ): (a1) β34=0, V=1; (a2) β34=45°, V=0.9013; (a3) β34=90°, V=0.8786; (a4) β34=135°, V=0.9337. "Interval" case ( β2=β4=β24 ): (b1) β24=0°, V=1; (b2) β24=45°, V=0.7812; (b3) β24=90°, V=0.8739; (b4) β24=135°, V=0.8417
    Simulation results for different polarization angles. Case 1 (γ1=γ2=γ3=γ123): (a1) γ123=0, V=1; (a2) γ123=0.5, V=0.9681; (a3) γ123=1, V=0.9146; (a4) γ123=106, V=0.9934. Case 2 (γ1=γ3=γ4=γ134): (b1) γ134=0, V=1; (b2) γ134=0.5, V=0.9791; (b3) γ134=1, V=0.9597; (b4) γ134=106, V=0.7551
    Fig. 7. Simulation results for different polarization angles. Case 1 (γ1=γ2=γ3=γ123): (a1) γ123=0, V=1; (a2) γ123=0.5, V=0.9681; (a3) γ123=1, V=0.9146; (a4) γ123=106, V=0.9934. Case 2 (γ1=γ3=γ4=γ134): (b1) γ134=0, V=1; (b2) γ134=0.5, V=0.9791; (b3) γ134=1, V=0.9597; (b4) γ134=106, V=0.7551
    Simulation results for different polarization angles. Case 1 (β1=β2=β3=β123): (a1) β123=0°, V=1; (a2) β123=45°, V=0.9601; (a3) β123=90°, V=0.9720; (a4) β123=135°, V=0.9673. Case 2 (β1=β3=β4=β134): (b1) β134=0°, V=1; (b2) β134=45°, V=0.8821; (b3) β134=90°, V=0.8382; (b4) β134=135°, V=0.8554
    Fig. 8. Simulation results for different polarization angles. Case 1 (β1=β2=β3=β123): (a1) β123=0°, V=1; (a2) β123=45°, V=0.9601; (a3) β123=90°, V=0.9720; (a4) β123=135°, V=0.9673. Case 2 (β1=β3=β4=β134): (b1) β134=0°, V=1; (b2) β134=45°, V=0.8821; (b3) β134=90°, V=0.8382; (b4) β134=135°, V=0.8554
    Simulation results for different polarization degrees. (a) γ1 = γ2 = γ3 =γ4 = 0, V = 1; (b) γ1 = γ2 = γ3 =γ4 = 0.5, V = 0.9601; (c) γ1 = γ2 = γ3 =γ4 = 1, V = 0.9915; (d) γ1 = γ2 = γ3 =γ4 = 106, V = 0.7837
    Fig. 9. Simulation results for different polarization degrees. (a) γ1 = γ2 = γ3 =γ4 = 0, V = 1; (b) γ1 = γ2 = γ3 =γ4 = 0.5, V = 0.9601; (c) γ1 = γ2 = γ3 =γ4 = 1, V = 0.9915; (d) γ1 = γ2 = γ3 =γ4 = 106, V = 0.7837
    Simulation results for different rotation angles. (a) β1 = β2 = β3 =β4 = 0°, V = 1; (b) β1 = β2 = β3 =β4 = 45°, V = 0.8831; (c) β1 = β2 = β3 =β4 = 90°, V = 0.8353; (d) β1 = β2 = β3 =β4 = 135°, V = 0.8517
    Fig. 10. Simulation results for different rotation angles. (a) β1 = β2 = β3 =β4 = 0°, V = 1; (b) β1 = β2 = β3 =β4 = 45°, V = 0.8831; (c) β1 = β2 = β3 =β4 = 90°, V = 0.8353; (d) β1 = β2 = β3 =β4 = 135°, V = 0.8517
    Zhiming QI, Wenyao LIANG. Influence of beam polarizations on holographic fabrication of compound photonic crystals[J]. Chinese Journal of Quantum Electronics, 2023, 40(4): 447
    Download Citation