• Infrared and Laser Engineering
  • Vol. 51, Issue 5, 20220294 (2022)
You Gao, Tuo Liu, Siyu Wang, and Hairun Guo
Author Affiliations
  • Joint International Research Laboratory of Specialty Fiber Optics and Advanced Communication, Key Laboratory of Specialty Fiber Optics and Optical Access Networks, Shanghai University, Shanghai 200444, China
  • show less
    DOI: 10.3788/IRLA20220294 Cite this Article
    You Gao, Tuo Liu, Siyu Wang, Hairun Guo. Fabrication and optical frequency comb generation in high-quality factor silicon oxide microcavity (Invited)[J]. Infrared and Laser Engineering, 2022, 51(5): 20220294 Copy Citation Text show less
    References

    [1] T R Schibli, I Hartl, D C Yost. Optical frequency comb with submillihertz linewidth and more than 10 W average power. Nature Photonics, 2, 355-359(2008).

    [2] V Brasch, M Geiselmann, T Herr, et al. Photonic chip–based optical frequency comb using soliton Cherenkov radiation. Science, 351, 357-360(2016).

    [3] Haojing Chen, Yunfen Xiao. Applications of integrated microresonator-based optical frequency combs in precision measurement. Infrared and Laser Engineering, 50, 20210560(2021).

    [4] Xiaoxiao Xue, Xiaoping Zheng. Novel microwave photonic applications based on integrated microcombs (Invited). Infrared and Laser Engineering, 50, 20211046(2021).

    [5] P Marin-Palomo, J N Kemal, M Karpov, et al. Microresonator-based solitons for massively parallel coherent optical communications. Nature, 546, 274-279(2017).

    [6] S Fujii, S Tanaka, T Ohtsuka, et al. Dissipative Kerr soliton microcombs for FEC-free optical communications over 100 channels. Optics Express, 30, 1351-1364(2022).

    [7] A S Raja, S Lange, M Karpov, et al. Ultrafast optical circuit switching for data centers using integrated soliton microcombs. Nature Communications, 12, 5867(2021).

    [8] B Corcoran, M Tan, X Xu, et al. Ultra-dense optical data transmission over standard fibre with a single chip source. Nature Communications, 11, 2568(2020).

    [9] J Riemensberger, A Lukashchuk, M Karpov, et al. Massively parallel coherent laser ranging using a soliton microcomb. Nature, 581, 164-170(2020).

    [10] E Lucas, P Brochard, R Bouchand, et al. Ultralow-noise photonic microwave synthesis using a soliton microcomb-based transfer oscillator. Nature Communications, 11, 374(2020).

    [11] J Liu, E Lucas, A S Raja, et al. Photonic microwave generation in the X-and K-band using integrated soliton microcombs. Nature Photonics, 14, 486-491(2020).

    [12] X Xu, M Tan, B Corcoran, et al. 11 TOPS photonic convolutional accelerator for optical neural networks. Nature, 589, 44-51(2021).

    [13] J Feldmann, N Youngblood, M Karpov, et al. Parallel convolutional processing using an integrated photonic tensor core. Nature, 589, 52-58(2021).

    [14] A A Savchenkov, A B Matsko, V S Ilchenko, et al. Optical resonators with ten million finesse. Optics Express, 15, 6768-6773(2007).

    [15] T Herr, V Brasch, J D Jost, et al. Temporal solitons in optical microresonators. Nature Photonics, 8, 145-152(2014).

    [16] E Lucas, H Guo, J D Jost, et al. Detuning-dependent properties and dispersion-induced instabilities of temporal dissipative Kerr solitons in optical microresonators. Physical Review A, 95, 043822(2017).

    [17] H Guo, M Karpov, E Lucas, et al. Universal dynamics and deterministic switching of dissipative Kerr solitons in optical microresonators. Nature Physics, 13, 94-102(2017).

    [18] H Taheri, A B Matsko, L Maleki, et al. All-optical dissipative discrete time crystals. Nature Communications, 13, 1-10(2022).

    [19] E Lucas, M Karpov, H Guo, et al. Breathing dissipative solitons in optical microresonators. Nature Communications, 8, 736(2017).

    [20] H Guo, E Lucas, M H P Pfeiffer, et al. Intermode breather solitons in optical microresonators. Physical Review X, 7, 041055(2017).

    [21] J Alnis, A Schliesser, C Y Wang, et al. Thermal-noise-limited crystalline Whispering-Gallery-mode resonator for laser stabilization. Physical Review A, 84, 011804(2011).

    [22] J Lim, A A Savchenkov, E Dale, et al. Chasing the thermodynamical noise limit in Whispering-Gallery-mode resonators for ultrastable laser frequency stabilization. Nature Communications, 8, 8(2017).

    [23] N G Pavlov, S Koptyaev, G V Lihachev, et al. Narrow-linewidth lasing and soliton Kerr microcombs with ordinary laser diodes. Nature Photonics, 12, 694-698(2018).

    [24] N G Pavlov, G Lihachev, S Koptyaev, et al. Soliton dual frequency combs in crystalline microresonators. Optics Letters, 42, 514-517(2017).

    [25] G Liu, V S Ilchenko, T Su, et al. Low-loss prism-waveguide optical coupling for ultrahigh-Q low-index monolithic resonators. Optica, 5, 219-226(2018).

    [26] V B Braginsky, M L Gorodetsky, V S Ilchenko. Quality-factor and nonlinear properties of optical whispering-gallery modes. Physics Letters A, 137, 393-397(1989).

    [27] M L Gorodetsky, A A Savchenkov, V S Ilchenko. Ultimate Q of optical microsphere resonators. Optics Letters, 21, 453-455(1996).

    [28] P Del’Haye, A Schliesser, O Arcizet, et al. Optical frequency comb generation from a monolithic microresonator. Nature, 450, 1214-1217(2007).

    [29] S B Papp, S A Diddams. Spectral and temporal characterization of a fused-quartz-microresonator optical frequency comb. Physical Review A, 84, 053833(2011).

    [30] S B Papp, P Del’Haye, S A Diddams. Mechanical control of a microrod-resonator optical frequency comb. Physical Review X, 3, 031003(2013).

    [31] P Del'Haye, S A Diddams, S B Papp. Laser-machined ultra-high-Q microrod resonators for nonlinear optics. Applied Physics Letters, 102, 221119(2013).

    [32] S Zhang, J M Silver, Bino L Del, et al. Sub-milliwatt-level microresonator solitons with extended access range using an auxiliary laser. Optica, 6, 206-212(2019).

    [33] Q T Cao, R Liu, H Wang, et al. Reconfigurable symmetry-broken laser in a symmetric microcavity. Nature Communications, 11, 1-7(2020).

    [34] R Niu, S Wan, Z Y Wang, et al. Perfect soliton crystals in the high-Q microrod resonator. IEEE Photonics Technology Letters, 33, 788-791(2021).

    [35] Q Wen, W Cui, Y Geng, et al. Precise control of micro-rod resonator free spectral range via iterative laser annealing. Chinese Optics Letters, 19, 071903(2021).

    [36] T Tan, Z Yuan, H Zhang, et al. Multispecies and individual gas molecule detection using Stokes solitons in a graphene over-modal microresonator. Nature Communications, 12, 6716(2021).

    [37] Y Dumeige, S Trebaol, L Ghişa, et al. Determination of coupling regime of high-Q resonators and optical gain of highly selective amplifiers. JOSA B, 25, 2073-2080(2008).

    [38] H Zhou, Y Geng, W Cui, et al. Soliton bursts and deterministic dissipative Kerr soliton generation in auxiliary-assisted microcavities. Light: Science & Applications, 8, 1-10(2019).

    You Gao, Tuo Liu, Siyu Wang, Hairun Guo. Fabrication and optical frequency comb generation in high-quality factor silicon oxide microcavity (Invited)[J]. Infrared and Laser Engineering, 2022, 51(5): 20220294
    Download Citation