• Photonics Research
  • Vol. 7, Issue 10, 1161 (2019)
Zhao Shi1,†, He Ding2,†, Hao Hong3, Dali Cheng1..., Kamran Rajabi1, Jian Yang2, Yongtian Wang2, Lai Wang1, Yi Luo1, Kaihui Liu3 and Xing Sheng1,*|Show fewer author(s)
Author Affiliations
  • 1Department of Electronic Engineering and Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China
  • 2Beijing Engineering Research Center of Mixed Reality and Advanced Display, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
  • 3State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Center of Quantum Matter, and School of Physics, Peking University, Beijing 100871, China
  • show less
    DOI: 10.1364/PRJ.7.001161 Cite this Article Set citation alerts
    Zhao Shi, He Ding, Hao Hong, Dali Cheng, Kamran Rajabi, Jian Yang, Yongtian Wang, Lai Wang, Yi Luo, Kaihui Liu, Xing Sheng, "Ultrafast and low-power optoelectronic infrared-to-visible upconversion devices," Photonics Res. 7, 1161 (2019) Copy Citation Text show less
    References

    [1] C. V. Raman. A new radiation. Indian J. Phys., 2, 387-398(1928).

    [2] N. Bloembergen. Solid state infrared quantum counters. Phys. Rev. Lett., 2, 84-85(1959).

    [3] F. Auzel. Upconversion and anti-Stokes processes with f and d ions in solids. Chem. Rev., 104, 139-174(2004).

    [4] B. Zhou, B. Shi, D. Jin, X. Liu. Controlling upconversion nanocrystals for emerging applications. Nat. Nanotechnol., 10, 924-936(2015).

    [5] F. Zhang. Photon Upconversion Nanomaterials, 416(2015).

    [6] A. A. Kaminskii, H. J. Eichler, H. Rhee, K. Ueda, K. Oka, H. Shibata. New nonlinear-laser effects in YbVO4 crystal: sesqui-octave Stokes and anti-Stokes comb generation and the cascaded self-frequency ‘tripling’ of χ(3)-Stokes components under a one-micron picosecond pumping. Laser Phys., 18, 1546-1552(2008).

    [7] T. Trupke, A. Shalav, B. S. Richards, P. Würfel, M. A. Green. Efficiency enhancement of solar cells by luminescent up-conversion of sunlight. Sol. Energy Mater. Sol. Cells, 90, 3327-3338(2006).

    [8] W. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov, J. C. Hummelen. Broadband dye-sensitized upconversion of near-infrared light. Nat. Photonics, 6, 560-564(2012).

    [9] J. A. Briggs, A. C. Atre, J. A. Dionne. Narrow-bandwidth solar upconversion: case studies of existing systems and generalized fundamental limits. J. Appl. Phys., 113, 124509(2013).

    [10] M. A. Green, S. P. Bremner. Energy conversion approaches and materials for high-efficiency photovoltaics. Nat. Mater., 16, 23-34(2016).

    [11] E. Downing, L. Hesselink, J. Ralston, R. Macfarlane. A three-color, solid-state, three-dimensional display. Science, 273, 1185-1189(1996).

    [12] J. Zhou, Z. Liu, F. Li. Upconversion nanophosphors for small-animal imaging. Chem. Soc. Rev., 41, 1323-1349(2012).

    [13] F. Wang, D. Banerjee, Y. Liu, X. Chen, X. Liu. Upconversion nanoparticles in biological labeling, imaging, and therapy. Analyst, 135, 1839-1854(2010).

    [14] D. K. Chatterjee, M. K. Gnanasammandhan, Y. Zhang. Small upconverting fluorescent nanoparticles for biomedical applications. Small, 6, 2781-2795(2010).

    [15] F. Wang, R. Deng, J. Wang, Q. Wang, Y. Han, H. Zhu, X. Chen, X. Liu. Tuning upconversion through energy migration in core-shell nanoparticles. Nat. Mater., 10, 968-973(2011).

    [16] A. Lay, D. S. Wang, M. D. Wisser, R. D. Mehlenbacher, Y. Lin, M. B. Goodman, W. L. Mao, J. A. Dionne. Upconverting nanoparticles as optical sensors of nano- to micro-Newton forces. Nano Lett., 17, 4172-4177(2017).

    [17] Y. Liu, Y. Lu, X. Yang, X. Zheng, S. Wen, F. Wang, X. Vidal, J. Zhao, D. Liu, Z. Zhou, C. Ma, J. Zhou, J. A. Piper, P. Xi, D. Jin. Amplified stimulated emission in upconversion nanoparticles for super-resolution nanoscopy. Nature, 543, 229-233(2017).

    [18] M. V. DaCosta, S. Doughan, Y. Han, U. J. Krull. Lanthanide upconversion nanoparticles and applications in bioassays and bioimaging: a review. Anal. Chim. Acta, 832, 1-33(2014).

    [19] J. Zhao, Z. Lu, Y. Yin, C. McRae, J. A. Piper, J. M. Dawes, D. Jin, E. M. Goldys. Upconversion luminescence with tunable lifetime in NaYF4:Yb, Er nanocrystals: role of nanocrystal size. Nanoscale, 5, 944-952(2013).

    [20] Y.-F. Wang, G.-Y. Liu, L.-D. Sun, J.-W. Xiao, J.-C. Zhou, C.-H. Yan. Nd3+-sensitized upconversion nanophosphors: efficient in vivo bioimaging probes with minimized heating effect. ACS Nano, 7, 7200-7206(2013).

    [21] H. Qin, D. Wu, J. Sathian, X. Xie, M. Ryan, F. Xie. Tuning the upconversion photoluminescence lifetimes of NaYF4:Yb3+, Er3+ through lanthanide Gd3+ doping. Sci. Rep., 8, 12683(2018).

    [22] M. Wu, D. N. Congreve, M. W. B. Wilson, J. Jean, N. Geva, M. Welborn, T. Van Voorhis, V. Bulović, M. G. Bawendi, M. A. Baldo. Solid-state infrared-to-visible upconversion sensitized by colloidal nanocrystals. Nat. Photonics, 10, 31-34(2015).

    [23] W. Wu, H. Guo, W. Wu, S. Ji, J. Zhao. Organic triplet sensitizer library derived from a single chromophore (BODIPY) with long-lived triplet excited state for triplet-triplet annihilation based upconversion. J. Org. Chem., 76, 7056-7064(2011).

    [24] Y. Y. Cheng, B. Fückel, T. Khoury, R. G. C. R. Clady, M. J. Y. Tayebjee, N. J. Ekins-Daukes, M. J. Crossley, T. W. Schmidt. Kinetic analysis of photochemical upconversion by triplet–triplet annihilation: beyond any spin statistical limit. J. Phys. Chem. Lett., 1, 1795-1799(2010).

    [25] W. Wu, J. Zhao, J. Sun, L. Huang, X. Yi. Red-light excitable fluorescent platinum(II) bis(aryleneethynylene) bis(trialkylphosphine) complexes showing long-lived triplet excited states as triplet photosensitizers for triplet–triplet annihilation upconversion. J. Mater. Chem. C, 1, 705-716(2013).

    [26] A. Köhler, H. Bässler. Triplet states in organic semiconductors. Mater. Sci. Eng. R, 66, 71-109(2009).

    [27] Z. Deutsch, L. Neeman, D. Oron. Luminescence upconversion in colloidal double quantum dots. Nat. Nanotechnol., 8, 649-653(2013).

    [28] A. Teitelboim, D. Oron. Broadband near-infrared to visible upconversion in quantum dot–quantum well heterostructures. ACS Nano, 10, 446-452(2016).

    [29] Y. Chen, H. Liang. Applications of quantum dots with upconverting luminescence in bioimaging. J. Photochem. Photobiol. B, 135, 23-32(2014).

    [30] J. Bergstrand, Q. Liu, B. Huang, X. Peng, C. Würth, U. Resch-Genger, Q. Zhan, J. Widengren, H. Ågren, H. Liu. On the decay time of upconversion luminescence. Nanoscale, 11, 4959-4969(2019).

    [31] C. Ye, L. Zhou, X. Wang, Z. Liang. Photon upconversion: from two-photon absorption (TPA) to triplet–triplet annihilation (TTA). Phys. Chem. Chem. Phys., 18, 10818-10835(2016).

    [32] H. Ding, L. Lu, Z. Shi, D. Wang, L. Li, X. Li, Y. Ren, C. Liu, D. Cheng, H. Kim, N. C. Giebink, X. Wang, L. Yin, L. Zhao, M. Luo, X. Sheng. Microscale optoelectronic infrared-to-visible upconversion devices and their use as injectable light sources. Proc. Natl. Acad. Sci. USA, 115, 6632-6637(2018).

    [33] E. F. Schubert. Light-Emitting Diodes(2006).

    [34] A. Rogalski, Z. Bielecki. Detection of optical radiation. Bull. Pol. Acad. Sci. Tech. Sci., 52, 43-66(2006).

    [35] J. Zhang, B. Ji, G. Chen, Z. Hua. Upconversion luminescence and discussion of sensitivity improvement for optical temperature sensing application. Inorg. Chem., 57, 5038-5047(2018).

    [36] T. N. Singh-Rachford, J. Lott, C. Weder, F. N. Castellano. Influence of temperature on low-power upconversion in rubbery polymer blends. J. Am. Chem. Soc., 131, 12007-12014(2009).

    [37] H. Peng, M. I. J. Stich, J. Yu, L.-N. Sun, L. H. Fischer, O. S. Wolfbeis. Luminescent europium(III) nanoparticles for sensing and imaging of temperature in the physiological range. Adv. Mater., 22, 716-719(2010).

    [38] M. Mahboub, Z. Huang, M. L. Tang. Efficient infrared-to-visible upconversion with subsolar irradiance. Nano Lett., 16, 7169-7175(2016).

    [39] Z. Huang, X. Li, M. Mahboub, K. M. Hanson, V. M. Nichols, H. Le, M. L. Tang, C. J. Bardeen. Hybrid molecule–nanocrystal photon upconversion across the visible and near-infrared. Nano Lett., 15, 5552-5557(2015).

    [40] M. Mahboub, H. Maghsoudiganjeh, A. M. Pham, Z. Huang, M. L. Tang. Triplet energy transfer from PbS(Se) nanocrystals to rubrene: the relationship between the upconversion quantum yield and size. Adv. Funct. Mater., 26, 6091-6097(2016).

    [41] L. Nienhaus, M. Wu, V. Bulović, M. A. Baldo, M. G. Bawendi. Using lead chalcogenide nanocrystals as spin mixers: a perspective on near-infrared-to-visible upconversion. Dalton Trans., 47, 8509-8516(2018).

    [42] H. Ding, H. Hong, D. Cheng, Z. Shi, K. Liu, X. Sheng. Power- and spectral-dependent photon-recycling effects in a double-junction gallium arsenide photodiode. ACS Photon., 6, 59-65(2019).

    [43] R.-H. Kim, D.-H. Kim, J. Xiao, B. H. Kim, S.-I. Park, B. Panilaitis, R. Ghaffari, J. Yao, M. Li, Z. Liu, V. Malyarchuk, D. G. Kim, A.-P. Le, R. G. Nuzzo, D. L. Kaplan, F. G. Omenetto, Y. Huang, Z. Kang, J. A. Rogers. Waterproof AlInGaP optoelectronics on stretchable substrates with applications in biomedicine and robotics. Nat. Mater., 9, 929-937(2010).

    [44] J. Viventi, D.-H. Kim, L. Vigeland, E. S. Frechette, J. A. Blanco, Y.-S. Kim, A. E. Avrin, V. R. Tiruvadi, S.-W. Hwang, A. C. Vanleer, D. F. Wulsin, K. Davis, C. E. Gelber, L. Palmer, J. Van der Spiegel, J. Wu, J. Xiao, Y. Huang, D. Contreras, J. A. Rogers, B. Litt. Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat. Neurosci., 14, 1599-1605(2011).

    [45] Y. Ding, H. Zhu, X. Zhang, J.-J. Zhu, C. Burda. Rhodamine B derivative-functionalized upconversion nanoparticles for FRET-based Fe3+-sensing. Chem. Commun., 49, 7797-7799(2013).

    [46] S. Chen, A. Z. Weitemier, X. Zeng, L. He, X. Wang, Y. Tao, A. J. Y. Huang, Y. Hashimotodani, M. Kano, H. Iwasaki, L. K. Parajuli, S. Okabe, D. B. L. Teh, A. H. All, I. Tsutsui-Kimura, K. F. Tanaka, X. Liu, T. J. McHugh. Near-infrared deep brain stimulation via upconversion nanoparticle-mediated optogenetics. Science, 359, 679-684(2018).

    [47] G. Friesen, H. A. Ossenbrink. Capacitance effects in high-efficiency cells. Sol. Energ. Mat. Sol. C., 48, 77-83(1997).

    Zhao Shi, He Ding, Hao Hong, Dali Cheng, Kamran Rajabi, Jian Yang, Yongtian Wang, Lai Wang, Yi Luo, Kaihui Liu, Xing Sheng, "Ultrafast and low-power optoelectronic infrared-to-visible upconversion devices," Photonics Res. 7, 1161 (2019)
    Download Citation