• Laser & Optoelectronics Progress
  • Vol. 56, Issue 21, 210101 (2019)
Xiaoyu Zhang1, Sheng Cui2、*, Deming Liu2, and Yang Jiang1、**
Author Affiliations
  • 1College of Physics, Guizhou University, Guiyang, Guizhou 550025, China
  • 2School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
  • show less
    DOI: 10.3788/LOP56.210101 Cite this Article Set citation alerts
    Xiaoyu Zhang, Sheng Cui, Deming Liu, Yang Jiang. Performance Analysis of Multi-Aperture Coherent Optical Receiver for Satellite-to-Ground Downlink[J]. Laser & Optoelectronics Progress, 2019, 56(21): 210101 Copy Citation Text show less
    References

    [1] Xu X F, Lu Z. Research status of mitigation techniques to assure the reliability of satellite-to-ground laser communications[J]. Journal of China Academy of Electronics and Information Technology, 13, 650-657(2018).

    [2] Kong Y X, Ke X Z, Yang Y. Bit error rate of laser linewidth in spatial coherent optical communication link[J]. Laser & Optoelectronics Progress, 55, 040603(2018).

    [3] Viswanath A, Jain V K, Kar S. Aperture averaging and receiver diversity for FSO downlink in presence of atmospheric turbulence and weather conditions for OOK, M-PPM and M-DPPM schemes[J]. Optical and Quantum Electronics, 48, 435(2016). http://link.springer.com/article/10.1007/s11082-016-0706-8

    [4] Shrestha A, Giggenbach D, Mustafa A et al. Fading testbed for free-space optical communications[J]. Proceedings of SPIE, 9991, 999105(2016). http://proceedings.spiedigitallibrary.org/proceeding.aspx?articleid=2575632

    [5] Geisler D J, Yarnall T M, Stevens M L et al. Multi-aperture digital coherent combining for free-space optical communication receivers[J]. Optics Express, 24, 12661-12671(2016). http://www.ncbi.nlm.nih.gov/pubmed/27410287

    [6] Ma J, Li K N, Tan L Y et al. Exact error rate analysis of free-space optical communications with spatial diversity over Gamma-Gamma atmospheric turbulence[J]. Journal of Modern Optics, 63, 252-260(2016). http://www.tandfonline.com/doi/full/10.1080/09500340.2015.1075618

    [7] Viswanath A, Jain V K, Kar S. Reduction in transmitter power requirement for earth-to-satellite and satellite-to-earth free space optical links with spatial diversity[J]. Optical and Quantum Electronics, 50, 418(2018).

    [8] Odeyemi K O, Owolawi P A, Srivastava V M. Performance analysis of free space optical system with spatial modulation and diversity combiners over the Gamma Gamma atmospheric turbulence[J]. Optics Communications, 382, 205-211(2017). http://www.sciencedirect.com/science/article/pii/S0030401816306617

    [9] Ma J, Li K N, Tan L Y et al. Performance analysis of satellite-to-ground downlink coherent optical communications with spatial diversity over Gamma-Gamma atmospheric turbulence[J]. Applied Optics, 54, 7575-7585(2015). http://europepmc.org/abstract/MED/26368880

    [10] Belmonte A, Kahn J M. Capacity of coherent free-space optical links using diversity-combining techniques: errata[J]. Optics Express, 18, 17748(2010). http://www.onacademic.com/detail/journal_1000035239540510_2b64.html

    [11] Niu M B, Cheng J L, Holzman J F. Exact error rate analysis of equal gain and selection diversity for coherent free-space optical systems on strong turbulence channels[J]. Optics Express, 18, 13915-13926(2010). http://europepmc.org/abstract/MED/20588524

    [12] Viswanath A, Jain V K, Kar S. Performance evaluation of satellite-to-earth FSO link in presence of turbulence and weather conditions for different IM schemes. [C]∥2016 Twenty Second National Conference on Communication (NCC), March 4-6, 2016, Guwahati, India. New York: IEEE, 16285519(2016).

    [13] Niu M B, Cheng J L, Holzman J F. Error rate performance comparison of coherent and subcarrier intensity modulated optical wireless communications[J]. Journal of Optical Communications and Networking, 5, 554-564(2013). http://ieeexplore.ieee.org/document/6533943/

    [14] Al-Habash M A, Andrews L C, Phillips R L. Mathematical model for the irradiance probability density function of a laser beam propagating through turbulent media[J]. Optical Engineering, 40, 1554-1562(2001).

    [15] Andrews L C, Young C Y. Al-HabashM A, et al. Fade statistics associated with a space/ground laser communication link at large zenith angles[J]. Proceedings of SPIE, 3763, 268-277(1999). http://spie.org/Publications/Proceedings/Paper/10.1117/12.363622

    [16] Sun J, Huang P M, Yao Z S. Diversity reception technology in coherent optical communication over Gamma-Gamma atmospheric turbulence channel[J]. Acta Optica Sinica, 38, 0706002(2018).

    [17] Andrews L C, Phillips R L[M]. Laser beam propagation through random media(2005).

    [18] Zhao J, Zhao S H, Zhao W H et al. Performance analysis for mixed RF/FSO airborne communication systems over atmospheric turbulence and pointing error[J]. Chinese Journal of Lasers, 44, 0906001(2017).

    [19] Ghassemlooy Z, Popoola W, Rajbhandari S[M]. Optical wireless communications: system and channel modelling with MATLAB(2012).

    [20] Kim I I. McArthur B, Korevaar E J. Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications[J]. Proceedings of SPIE, 4214, 26-37(2001).

    [21] Gu K, Xu Z Y, Wang J Y et al. Long-wave infrared wireless laser communication performance under atmospheric turbulence conditions[J]. Laser & Optoelectronics Progress, 54, 030603(2017).

    [22] Niu M B, Cheng J L, Holzman J F et al. Coherent free-space optical transmission with diversity combining for Gamma-Gamma atmospheric turbulence. [C]∥2010 25th Biennial Symposium on Communications, May 12-14, 2010, Kingston, ON, Canada. New York: IEEE, 217-220(2010).

    Xiaoyu Zhang, Sheng Cui, Deming Liu, Yang Jiang. Performance Analysis of Multi-Aperture Coherent Optical Receiver for Satellite-to-Ground Downlink[J]. Laser & Optoelectronics Progress, 2019, 56(21): 210101
    Download Citation