• Journal of Infrared and Millimeter Waves
  • Vol. 36, Issue 2, 160 (2017)
XING En-Bo1、2, RONG Jia-Min1、2, TONG Cun-Zhu1, TIAN Si-Cong1, WANG Li-Jie1, SHU Shi-Li1, and WANG Li-Jun1
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    DOI: 10.11972/j.issn.1001-9014.2017.02.007 Cite this Article
    XING En-Bo, RONG Jia-Min, TONG Cun-Zhu, TIAN Si-Cong, WANG Li-Jie, SHU Shi-Li, WANG Li-Jun. Influence of microcavity effect on modulation response in 1.3 μm quantum dot photonic crystal nanocavity lasers[J]. Journal of Infrared and Millimeter Waves, 2017, 36(2): 160 Copy Citation Text show less
    References

    [1] Almeida V R, Barrios C A, Panepucci R R, et. al. All-optical control of light on a silicon chip [J]. Nature, 2004, 431: 1081-1084.

    [2] David A, Miller B. Device requirements for optical interconnects to silicon chips [J]. Proc. IEEE, 2009, 97(7): 1166-1185.

    [3] Zhang Z C, You Z, Chu D P. Fundamentals of phase-only liquid crystal on silicon (LCOS) devices Open [J]. Light-Sci. Appl. 2014, 3: e213.

    [4] Gu M, Li X P, Cao Y Y. Optical storage arrays: a perspective for future big data storage Open [J]. Light-Sci. Appl., 2014, 3: e177.

    [5] Strauf S, Jahnke F. Single quantum dot nanolaser [J]. Laser Photon. Rev., 2011, 5(5): 607-633.

    [6] Ellis B, Mayer M A, Shambat G, et al. Ultralow-threshold electrically pumped quantum dot photonic-crystal nanocavity laser [J]. Nat. Photon, 2011, 5(5): 297-300.

    [7] Altug H, Englund D, VuCkovi J. Ultrafast photonic crystal nanocavity laser [J]. Nat. Physics, 2006, 2(2):484-488.

    [8] Englund D, Altug H, Ellis B, et al. Ultrafast photonic crystal lasers [J]. Laser Photon. Rev., 2008, 2(4): 264-274.

    [9] Matsuo S, Shinya A, Chen C H, et al. 20-Gbit/s directly modulated photonic crystal nanocavity laser with ultra-low power consumption [J]. Opt. Express, 2011, 19(3):2242-2250.

    [10] Takeda K, Sato T, Shinya A, et al. Few-fJ/bit data transmissions using directly modulated lambda-scale embedded active region photonic-crystal lasers [J]. Nat. Photon, 2013, 7(7):569-575.

    [11] Chen C H, Takeda K, Shinya A, et al. 40-Gb/s directly-modulated photonic crystal lasers under optical injection-locking [J]. Opt. Express, 2011, 19(18):17669.

    [12] Bjork G, Yamamoto Y. Analysis of semiconductor microcavity lasers using rate equations [J]. IEEE J. Quantum Electron, 1999, 23(11):2386-2396.

    [13] Lorke M, Nielsen T R, M rk J. Influence of carrier dynamics on the modulation bandwidth of quantum-dot based nanocavity devices [J]. Appl. Phys. Lett., 2010, 97(21): 211106-211106-3.

    [14] Tong C Z, Xu D, Soon F Y. Carrier relaxation and modulation response of 1.3 μm InAs-GaAs quantum dot lasers [J]. J. Lightwave Technol., 2009, 27(23): 5442-5450.

    [15] Xiao J L, Huang Y Z. Numerical analysis of gain saturation, noise figure, and carrier distribution for quantum-dot semiconductor-optical amplifiers [J]. IEEE J. Quantum Electronics, 2008, 44(5): 448-455.

    [16] Ellis B, Fushman I, Englund D, et al. Dynamics of quantum dot photonic crystal lasers [J]. Appl. Phys. Lett., 2007, 90(15): 151102.

    [17] Zeghuzi1 A, Schmeckebier H, Stubenrauch M, et al. 25 Gbit/s differential phase-shift-keying signal generation using directly modulated quantum-dot semiconductor optical amplifiers [J]. Appl. Phys. Lett., 2010, 106(21):213501.

    [18] Meuer C, Kim J, Laemmlin M, et al. 40 GHz small-signal cross-gain modulation in 1.3 m quantum dot semiconductor optical amplifiers [J]. Appl. Phys. Lett., 2008, 93: 051110.

    [19] Kim S M, Wang Y, Keever M, et al. High-frequency modulation characteristics of 1.3 μm InGaAs quantum dot lasers [J]. IEEE Photon. Technol. Lett., 2004, 16(2): 377-379.

    [20] Shore K A. Modulation bandwidth of metal-clad semiconductor nanolasers with cavity-enhanced spontaneous emission [J]. Electron. Lett., 2010, 46(25):1688-1689.

    [21] Tong C Z, Yoon S F, Ngo C Y, et al. Rate equations for 1.3 μm dots-under-a-well and dots-in-a-well self-assembled InAs–GaAs quantum-dot Lasers [J]. IEEE J. Quantum Electron, 2006, 42(11):1175-1183.

    [22] Borri P, Langbein W, Hvam J M, et al. Spectral hole-burning and carrier-heating dynamics in InGaAs quantum-dot amplifiers [J]. IEEE J. Sel. Top. Quantum Electron, 2000, 6(3):544-551.

    [23] Fiore A, Borri P, Langbein W, et al. Time-resolved optical characterization of InAs/InGaAs quantum dots emitting at 1.3 μm [J]. Appl. Phys. Lett., 2000, 76(23):3430-3432.

    [24] Nomura M, Iwamoto S, Watanabe M, et al. Room temperature continuous-wave lasing in photonic crystal nanocavity [J]. Opt. Express, 2006, 14(13):6308-6315.

    [25] Sugawara M. Semiconductor and semimetals [M]. New York: Academic, 1999.

    [26] Chang W H, Chen W Y, Chang H S, et al. Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities [J]. Phys. Rev. Lett., 2006, 96(11):117401-1-4.

    [27] Bayer M. Forchel A. Temperature dependence of the exciton homogeneous linewidth in In0.60Ga0.40As/GaAs self-assembled quantum dots [J]. Phys. Rev. B., 2002, 65(4):321-325.

    [28] Englund D, Fattal D. Waks E, et al. Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal [J]. Phys. Rev. Lett., 2005, 95(1): 013904-1-4.

    [29] Kress A, Hofbauer F, Reinelt N, et al. Manipulation of the spontaneous emission dynamics of quantum dots in two-dimensional photonic crystals [J]. Phys. Rev. B., 2005, 200571(24): 241304-1-4.

    [30] Park G, Shchekin O B, Deppe D G. Temperature dependence of gain saturation in multilevel quantum dot lasers [J]. IEEE J. Quantum Electron, 2000, 36(9):1065-1071.

    [31] Nielsen T R, Gartner P, Jahnke F. Many-body theory of carrier capture and relaxation in semiconductor quantum-dot lasers [J]. Phys. Rev. B., 2004, 69(23): 517-519.

    [32] Tong C Z, Xu D W, Yoon S F. Carrier relaxation and modulation response of 1.3 μm InAs–GaAs quantum dot lasers [J]. J Lightwave Technol., 2009, 27(23):5442-5450.

    XING En-Bo, RONG Jia-Min, TONG Cun-Zhu, TIAN Si-Cong, WANG Li-Jie, SHU Shi-Li, WANG Li-Jun. Influence of microcavity effect on modulation response in 1.3 μm quantum dot photonic crystal nanocavity lasers[J]. Journal of Infrared and Millimeter Waves, 2017, 36(2): 160
    Download Citation