• Chinese Optics Letters
  • Vol. 19, Issue 10, 100101 (2021)
Lanting Li1, Yuanlin Zheng1、2, Haigang Liu1、*, and Xianfeng Chen1、2、3、4、**
Author Affiliations
  • 1State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
  • 2Shanghai Research Center for Quantum Sciences, Shanghai 201315, China
  • 3Jinan Institute of Quantum Technology, Jinan 250101, China
  • 4Collaborative Innovation Center of Light Manipulations and Applications, Shandong Normal University, Jinan 250358, China
  • show less
    DOI: 10.3788/COL202119.100101 Cite this Article Set citation alerts
    Lanting Li, Yuanlin Zheng, Haigang Liu, Xianfeng Chen. Reconstitution of optical orbital angular momentum through strongly scattering media via feedback-based wavefront shaping method[J]. Chinese Optics Letters, 2021, 19(10): 100101 Copy Citation Text show less
    References

    [1] L. Allen, M. W. Beijersbergen, R. J. Spreeuw, J. P. Woerdman. Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes. Phys. Rev. A, 45, 8185(1992).

    [2] S. S. Oemrawsingh, J. A. van Houwelingen, E. R. Eliel, J. P. Woerdman, E. J. Verstegen, J. G. Kloosterboer, G. W. 't Hooft. Production and characterization of spiral phase plates for optical wavelengths. Appl. Opt., 43, 688(2004).

    [3] N. R. Heckenberg, R. McDuff, C. P. Smith, A. G. White. Generation of optical phase singularities by computer-generated holograms. Opt. Lett., 17, 221(1992).

    [4] A. M. Yao, M. J. Padgett. Orbital angular momentum: origins, behavior and applications. Adv. Opt. Photon., 3, 161(2011).

    [5] J. Arlt, K. Dholakia, L. Allen, M. J. Padgett. The production of multiringed Laguerre–Gaussian modes by computer-generated holograms. J. Mod. Opt., 45, 1231(1998).

    [6] E. Karimi, B. Piccirillo, E. Nagali, L. Marrucci, E. Santamato. Efficient generation and sorting of orbital angular momentum eigenmodes of light by thermally tuned q-plates. Appl. Phys. Lett., 94, 231124(2009).

    [7] G. C. G. Berkhout, M. W. Beijersbergen. Method for probing the orbital angular momentum of optical vortices in electromagnetic waves from astronomical objects. Phys. Rev. Lett., 101, 100801(2008).

    [8] G. C. Berkhout, M. P. Lavery, J. Courtial, M. W. Beijersbergen, M. J. Padgett. Efficient sorting of orbital angular momentum states of light. Phys. Rev. Lett., 105, 153601(2010).

    [9] Y. Wang, X. Ma, M. Pu, X. Li, C. Huang, W. Pan, B. Zhao, J. Cui, X. Luo. Transfer of orbital angular momentum through sub-wavelength waveguides. Opt. Express, 23, 2857(2015).

    [10] N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, S. Ramachandran. Terabit-scale orbital angular momentum mode division multiplexing in fibers. Science, 340, 1545(2013).

    [11] Z. Liu, S. Yan, H. Liu, X. Chen. Superhigh-resolution recognition of optical vortex modes assisted by a deep-learning method. Phys. Rev. Lett., 123, 183902(2019).

    [12] N. B. Simpson, L. Allen, M. J. Padgett. Optical tweezers and optical spanners with Laguerre–Gaussian modes. J. Mod. Opt., 43, 2485(1996).

    [13] H. He, M. E. Friese, N. R. Heckenberg, H. Rubinsztein-Dunlop. Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity. Phys. Rev. Lett., 75, 826(1995).

    [14] K. Ladavac, D. G. Grier. Microoptomechanical pumps assembled and driven by holographic optical vortex arrays. Opt. Express, 12, 1144(2004).

    [15] M. P. J. Lavery, F. C. Speirits, S. M. Barnett, M. J. Padgett. Detection of a spinning object using light’s orbital angular momentum. Science, 341, 537(2013).

    [16] A. Mair, A. Vaziri, G. Weihs, A. Zeilinger. Entanglement of the orbital angular momentum states of photons. Nature, 412, 313(2001).

    [17] J. T. Barreiro, T.-C. Wei, P. G. Kwiat. Beating the channel capacity limit for linear photonic superdense coding. Nat. Phys., 4, 282(2008).

    [18] F. Tamburini, G. Anzolin, G. Umbriaco, A. Bianchini, C. Barbieri. Overcoming the Rayleigh criterion limit with optical vortices. Phys. Rev. Lett., 97, 163903(2006).

    [19] Z. Y. Zhou, Y. Li, D. S. Ding, W. Zhang, S. Shi, B. S. Shi. Optical vortex beam based optical fan for high-precision optical measurements and optical switching. Opt. Lett., 39, 5098(2014).

    [20] V. D’Ambrosio, N. Spagnolo, L. Del Re, S. Slussarenko, Y. Li, L. C. Kwek, L. Marrucci, S. P. Walborn, L. Aolita, F. Sciarrino. Photonic polarization gears for ultra-sensitive angular measurements. Nat. Commun., 4, 2432(2013).

    [21] D. Palacios, D. Rozas, G. A. Swartzlander. Observed scattering into a dark optical vortex core. Phys. Rev. Lett., 88, 103902(2002).

    [22] M. Luo, Q. Chen, L. Hua, D. Zhao. Propagation of stochastic electromagnetic vortex beams through the turbulent biological tissues. Phys. Lett. A, 378, 308(2014).

    [23] L. Shi, L. Lindwasser, W. Wang, R. Alfano, A. Rodriguez-Contreras. Propagation of Gaussian and Laguerre–Gaussian vortex beams through mouse brain tissue. J. Biophoton., 10, 1756(2017).

    [24] W. B. Wang, R. Gozali, L. Shi, L. Lindwasser, R. R. Alfano. Deep transmission of Laguerre–Gaussian vortex beams through turbid scattering media. Opt. Lett., 41, 2069(2016).

    [25] R. Fickler, M. Ginoya, R. W. Boyd. Custom-tailored spatial mode sorting by controlled random scattering. Phys. Rev. B, 95, 161108(2017).

    [26] T. Y. Lin, A. Liu, X. P. Zhang, H. Li, L. P. Wang, H. L. Han, Z. Chen, X. P. Liu, H. B. Lü. Analyzing OAM mode purity in optical fibers with CNN-based deep learning. Chin. Opt. Lett., 17, 100603(2019).

    [27] L. Chen, R. K. Singh, A. Dogariu, Z. Chen, J. Pu. Estimating topological charge of propagating vortex from single-shot non-imaged speckle. Chin. Opt. Lett., 19, 022603(2021).

    [28] L. Gong, Q. Zhao, H. Zhang, X. Y. Hu, K. Huang, J. M. Yang, Y. M. Li. Optical orbital-angular-momentum-multiplexed data transmission under high scattering. Light Sci. Appl., 8, 27(2019).

    [29] I. M. Vellekoop, A. P. Mosk. Focusing coherent light through opaque strongly scattering media. Opt. Lett., 32, 2309(2007).

    [30] I. M. Vellekoop, A. P. Mosk. Phase control algorithms for focusing light through turbid media. Opt. Commun., 281, 3071(2008).

    [31] A. Boniface, M. Mounaix, B. Blochet, R. Piestun, S. Gigan. Transmission-matrix-based point-spread-function engineering through a complex medium. Optica, 4, 54(2017).

    [32] D. B. Conkey, A. N. Brown, A. M. Caravaca-Aguirre, R. Piestun. Genetic algorithm optimization for focusing through turbid media in noisy environments. Opt. Express, 20, 4840(2012).

    [33] Y. Qiao, Y. Peng, Y. Zheng, F. Ye, X. Chen. Second-harmonic focusing by a nonlinear turbid medium via feedback-based wavefront shaping. Opt. Lett., 42, 1895(2017).

    [34] A. Daniel, L. Liberman, Y. Silberberg. Wavefront shaping for glare reduction. Optica, 3, 1104(2016).

    [35] M. Mounaix, D. Andreoli, H. Defienne, G. Volpe, O. Katz, S. Gresillon, S. Gigan. Spatiotemporal coherent control of light through a multiple scattering medium with the multispectral transmission matrix. Phys. Rev. Lett., 116, 253901(2016).

    [36] O. Katz, P. Heidmann, M. Fink, S. Gigan. Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations. Nat. Photon., 8, 784(2014).

    [37] J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, A. P. Mosk. Non-invasive imaging through opaque scattering layers. Nature, 491, 232(2012).

    [38] S. Yoon, M. Kim, M. Jang, Y. Choi, W. Choi, S. Kang, W. Choi. Deep optical imaging within complex scattering media. Nat. Rev. Phys., 2, 141(2020).

    [39] R. Horstmeyer, H. Ruan, C. Yang. Guidestar-assisted wavefront-shaping methods for focusing light into biological tissue. Nat. Photon., 9, 563(2015).

    [40] J. Jin, J. Luo, X. Zhang, H. Gao, X. Li, M. Pu, P. Gao, Z. Zhao, X. Luo. Generation and detection of orbital angular momentum via metasurface. Sci. Rep., 6, 24286(2016).

    [41] G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pas’ko, S. Barnett, S. Franke-Arnold. Free-space information transfer using light beams carrying orbital angular momentum. Opt. Express, 12, 5448(2004).

    [42] R. Corey, M. Kissner, P. Saulnier. Coherent backscattering of light. Am. J. Phys., 63, 560(1995).

    [43] P. C. de Oliveira, A. E. Perkins, N. M. Lawandy. Coherent backscattering from high-gain scattering media. Opt. Lett., 21, 1685(1996).

    [44] K. Nam, J. H. Park. Increasing the enhancement factor for DMD-based wavefront shaping. Opt. Lett., 45, 3381(2020).

    [45] A. P. Mosk, A. Lagendijk, G. Lerosey, M. Fink. Controlling waves in space and time for imaging and focusing in complex media. Nat. Photon., 6, 283(2012).

    [46] I. M. Vellekoop. Feedback-based wavefront shaping. Opt. Express, 23, 12189(2015).

    [47] O. Katz, E. Small, Y. Bromberg, Y. Silberberg. Focusing and compression of ultrashort pulses through scattering media. Nat. Photon., 5, 372(2011).

    [48] Y. Guan, O. Katz, E. Small, J. Zhou, Y. Silberberg. Polarization control of multiply scattered light through random media by wavefront shaping. Opt. Lett., 37, 4663(2012).

    [49] E. Small, O. Katz, Y. Guan, Y. Silberberg. Spectral control of broadband light through random media by wavefront shaping. Opt. Lett., 37, 3429(2012).

    [50] S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, S. Gigan. Image transmission through an opaque material. Nat. Commun., 1, 81(2010).

    [51] S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, S. Gigan. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett., 104, 100601(2010).

    Data from CrossRef

    [1] Chi Man Woo, Qi Zhao, Tianting Zhong, Huanhao Li, Zhipeng Yu, Puxiang Lai. Optimal efficiency of focusing diffused light through scattering media with iterative wavefront shaping. APL Photonics, 7, 046109(2022).

    Lanting Li, Yuanlin Zheng, Haigang Liu, Xianfeng Chen. Reconstitution of optical orbital angular momentum through strongly scattering media via feedback-based wavefront shaping method[J]. Chinese Optics Letters, 2021, 19(10): 100101
    Download Citation