• Photonics Research
  • Vol. 9, Issue 4, 460 (2021)
Xinyu Chen1、†, Wei Ding2、4、†,*, Ying-Ying Wang2、3, Shou-Fei Gao2, Feixiang Xu1, Huichao Xu1, Yi-Feng Hong2, Yi-Zhi Sun2, Pu Wang3, Yan-Qing Lu1、5、*, and Lijian Zhang1、6、*
Author Affiliations
  • 1National Laboratory of Solid State Microstructures, College of Engineering and Applied Sciences, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
  • 2Institute of Photonics Technology, Jinan University, Guangzhou 510632, China
  • 3Institute of Laser Engineering, Beijing University of Technology, Beijing 100124, China
  • 4e-mail: photonicsweiding@163.com
  • 5e-mail: yqlu@nju.edu.cn
  • 6e-mail: lijian.zhang@nju.edu.cn
  • show less
    DOI: 10.1364/PRJ.409521 Cite this Article Set citation alerts
    Xinyu Chen, Wei Ding, Ying-Ying Wang, Shou-Fei Gao, Feixiang Xu, Huichao Xu, Yi-Feng Hong, Yi-Zhi Sun, Pu Wang, Yan-Qing Lu, Lijian Zhang. High-fidelity, low-latency polarization quantum state transmissions over a hollow-core conjoined-tube fiber at around 800 nm[J]. Photonics Research, 2021, 9(4): 460 Copy Citation Text show less
    References

    [1] J.-P. Chen, C. Zhang, Y. Liu, C. Jiang, W. Zhang, X.-L. Hu, J.-Y. Guan, Z.-W. Yu, H. Xu, J. Lin, M.-J. Li, H. Chen, H. Li, L. You, Z. Wang, X.-B. Wang, Q. Zhang, J.-W. Pan. Sending-or-not-sending with independent lasers: secure twin-field quantum key distribution over 509 km. Phys. Rev. Lett., 124, 070501(2020).

    [2] S. Wang, D.-Y. He, Z.-Q. Yin, F.-Y. Lu, C.-H. Cui, W. Chen, Z. Zhou, G.-C. Guo, Z.-F. Han. Beating the fundamental rate-distance limit in a proof-of-principle quantum key distribution system. Phys. Rev. X, 9, 021046(2019).

    [3] N. Sangouard, C. Simon, H. de Riedmatten, N. Gisin. Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys., 83, 33-80(2011).

    [4] S. Wehner, D. Elkouss, R. Hanson. Quantum internet: a vision for the road ahead. Science, 362, eaam9288(2018).

    [5] C. H. Bennett, D. P. DiVincenzo. Quantum information and computation. Nature, 404, 247-255(2000).

    [6] S. Brito, A. Canabarro, R. Chaves, D. Cavalcanti. Statistical properties of the quantum internet. Phys. Rev. Lett., 124, 210501(2020).

    [7] S. Khatri, C. T. Matyas, A. U. Siddiqui, J. P. Dowling. “Practical figures of merit and thresholds for entanglement distribution in quantum networks. Phys. Rev. Res., 1, 023032(2019).

    [8] M. Pant, H. Krovi, D. Towsley, L. Tassiulas, L. Jiang, P. Basu, D. Englund, S. Guha. “Routing entanglement in the quantum internet. npj Quantum Inf., 5, 25(2019).

    [9] N. Gisin, G. Ribordy, W. Tittel, H. Zbinden. Quantum cryptography. Rev. Mod. Phys., 74, 145-195(2002).

    [10] F. Xu, X. Ma, Q. Zhang, H.-K. Lo, J.-W. Pan. Secure quantum key distribution with realistic devices. Rev. Mod. Phys., 92, 025002(2020).

    [11] L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P. Bierhorst, M. A. Wayne, M. J. Stevens, T. Gerrits, S. Glancy, D. R. Hamel, M. S. Allman, K. J. Coakley, S. D. Dyer, C. Hodge, A. E. Lita, V. B. Verma, C. Lambrocco, E. Tortorici, A. L. Migdall, Y. Zhang, D. R. Kumor, W. H. Farr, F. Marsili, M. D. Shaw, J. A. Stern, C. Abellán, W. Amaya, V. Pruneri, T. Jennewein, M. W. Mitchell, P. G. Kwiat, J. C. Bienfang, R. P. Mirin, E. Knill, S. W. Nam. Strong loophole-free test of local realism. Phys. Rev. Lett., 115, 250402(2015).

    [12] Y. Zhang, L. K. Shalm, J. C. Bienfang, M. J. Stevens, M. D. Mazurek, S. W. Nam, C. Abellán, W. Amaya, M. W. Mitchell, H. Fu, C. A. Miller, A. Mink, E. Knill. Experimental low-latency device-independent quantum randomness. Phys. Rev. Lett., 124, 010505(2020).

    [13] C. Monroe. Quantum information processing with atoms and photons. Nature, 416, 238-246(2002).

    [14] A. I. Lvovsky, B. C. Sanders, W. Tittel. Optical quantum memory. Nat. Photonics, 3, 706-714(2009).

    [15] R. H. Hadfield. Single-photon detectors for optical quantum information applications. Nat. Photonics, 3, 696-705(2009).

    [16] R. Ikuta, Y. Kusaka, T. Kitano, H. Kato, T. Yamamoto, M. Koashi, N. Imoto. Wide-band quantum interface for visible-to-telecommunication wavelength conversion. Nat. Commun., 2, 1544(2011).

    [17] P. St.J. Russell. Photonic-crystal fibers. J. Lightwave Technol., 24, 4729-4749(2006).

    [18] M. Ding, M. Komanec, D. Suslov, D. Dousek, S. Zvanovec, E. R. N. Fokoua, T. D. Bradley, F. Poletti, D. J. Richardson, R. Slavik. Long-length and thermally stable high-finesse Fabry–Perot interferometers made of hollow core optical fiber. J. Lightwave Technol., 38, 2423-2427(2020).

    [19] D. M. Atkin, T. J. Shepherd, T. A. Birks, P. St.J. Russell, P. J. Roberts. Full 2-D photonic bandgaps in silica/air structures. Electron. Lett., 31, 1941-1943(1995).

    [20] R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, D. C. Allan. Single-mode photonic band gap guidance of light in air. Science, 285, 1537-1539(1999).

    [21] P. Roberts, F. Couny, H. Sabert, B. Mangan, D. Williams, L. Farr, M. Mason, A. Tomlinson, T. Birks, J. Knight, P. St. J. Russell. Ultimate low loss of hollow-core photonic crystal fibers. Opt. Express, 13, 236-244(2005).

    [22] F. Benabid, P. J. Roberts. Linear and nonlinear optical properties of hollow core photonic crystal fiber. J. Mod. Opt., 58, 87-124(2011).

    [23] P. J. Mosley, W. C. Huang, M. G. Welch, B. J. Mangan, W. J. Wadsworth, J. C. Knight. Ultrashort pulse compression and delivery in a hollow-core photonic crystal fiber at 540 nm wavelength. Opt. Lett., 35, 3589-3591(2010).

    [24] N. M. Litchinitser, A. K. Abeeluck, C. Headley, B. J. Eggleton. Antiresonant reflecting photonic crystal optical waveguides. Opt. Lett., 27, 1592-1594(2002).

    [25] F. Benabid, J. C. Knight, G. Antonopoulos, P. St. J. Russell. Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber. Science, 298, 399-402(2002).

    [26] W. Ding, Y.-Y. Wang, S.-F. Gao, M.-L. Wang, P. Wang. Recent progress in low-loss hollow-core anti-resonant fibers and their applications. IEEE J. Sel. Top. Quantum Electron., 26, 4400312(2020).

    [27] Y. Y. Wang, N. V. Wheeler, F. Couny, P. J. Roberts, F. Benabid. Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber. Opt. Lett., 36, 669-671(2011).

    [28] F. Poletti. Nested antiresonant nodeless hollow core fiber. Opt. Express, 22, 23807-23828(2014).

    [29] Y. Wang, W. Ding. Confinement loss in hollow-core negative curvature fiber: a multi-layered model. Opt. Express, 25, 33122(2017).

    [30] S.-F. Gao, Y.-Y. Wang, W. Ding, D.-L. Jiang, S. Gu, X. Zhang, P. Wang. Hollow-core conjoined-tube negative-curvature fiber with ultralow loss. Nat. Commun., 9, 2828(2018).

    [31] G. T. Jasion, T. Bradley, K. Harrington, H. Sakr, Y. Chen, E. N. Fokoua, I. Davidson, A. Taranta, J. Hayes, D. Richardson, F. Poletti. Hollow core NANF with 0.28  dB/km attenuation in the C and L bands. Optical Fiber Communication Conference, Th4B.4(2020).

    [32] P. Uebel, M. C. Günendi, M. H. Frosz, G. Ahmed, N. N. Edavalath, J.-M. Ménard, P. St. J. Russell. Broadband robustly single-mode hollow-core PCF by resonant filtering of higher-order modes. Opt. Lett., 41, 1961-1964(2016).

    [33] X. Wang, D. Ge, W. Ding, Y. Wang, S. Gao, X. Zhang, Y. Sun, J. Li, Z. Chen, P. Wang. Hollow-core conjoined-tube fiber for penalty-free data transmission under offset launch conditions. Opt. Lett., 44, 2145-2148(2019).

    [34] A. Taranta, E. N. Fokoua, S. A. Mousavi, J. R. Hayes, T. D. Bradley, G. T. Jasion, F. Poletti. Exceptional polarization purity in antiresonant hollow-core optical fibers. Nat. Photon., 14, 504-510(2020).

    [35] S.-F. Gao, Y.-Y. Wang, W. Ding, Y.-F. Hong, P. Wang. Conquering the Rayleigh scattering limit of silica glass fiber at visible wavelengths with a hollow-core fiber approach. Laser Photon. Rev., 14, 1900241(2020).

    [36] F. Poletti, N. V. Wheeler, M. N. Petrovich, N. Baddela, E. N. Fokoua, J. R. Hayes, D. R. Gray, Z. Li, R. Slavík, D. J. Richardson. Towards high-capacity fiber-optic communications at the speed of light in vacuum. Nat. Photonics, 7, 279-284(2013).

    [37] L. Vincetti, V. Setti. Waveguiding mechanism in tube lattice fibers. Opt. Express, 18, 23133-23146(2010).

    [38] D. Bird. Attenuation of model hollow-core, anti-resonant fibers. Opt. Express, 25, 23215-23237(2017).

    [39] H. Sakr, T. D. Bradley, Y. Hong, G. T. Jasion, J. R. Hayes, H. Kim, I. A. Davidson, E. N. Fokoua, Y. Chen, K. R. H. Bottrill, N. Taengnoi, P. Petropoulos, D. J. Richardson, F. Poletti. Ultrawide bandwidth hollow core fiber for interband short reach data transmission. Optical Fiber Communication Conference, Th4A.1(2019).

    [40] L. Vincetti, V. Setti. Extra loss due to Fano resonances in inhibited coupling fibers based on a lattice of tubes. Opt. Express, 20, 14350-14361(2012).

    [41] E. Brinkmeyer, W. Eickhoff. Ultimate limit of polarisation holding in single-mode fibers. Electron. Lett., 19, 996-997(1983).

    [42] D. F. V. James, P. G. Kwiat, W. J. Munro, A. G. White. Measurement of qubits. Phys. Rev. A, 64, 052312(2001).

    [43] J. L. O’Brien, G. J. Pryde, A. Gilchrist, D. F. V. James, N. K. Langford, T. C. Ralph, A. G. White. Quantum process tomography of a controlled-NOT gate. Phys. Rev. Lett., 93, 080502(2004).

    [44] J. F. Clauser, M. A. Horne, A. Shimony, R. A. Holt. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett., 23, 880-884(1969).

    [45] Z. Liu, M. N. Petrovich, D. J. Richardson, F. Poletti, R. Slavik, P. Bayvel, B. Karanov, L. Galdino, J. R. Hayes, D. Lavery, K. Clark, K. Shi, D. J. Elson, B. C. Thomsen. Nonlinearity-free coherent transmission in hollow-core antiresonant fiber. J. Lightwave Technol., 37, 909-916(2019).

    [46] V. Giovannetti, S. Lloyd, L. Maccone. Quantum-enhanced positioning and clock synchronization. Nature, 412, 417-419(2001).

    [47] B. Lamine, C. Fabre, N. Treps. Quantum improvement of time transfer between remote clocks. Phys. Rev. Lett., 101, 123601(2008).

    [48] P. Kómár, E. M. Kessler, M. Bishof, L. Jiang, A. S. Sørensen, J. Ye, M. D. Lukin. A quantum network of clocks. Nat. Phys., 10, 582-587(2014).

    [49] E. N. Fokoua, F. Poletti, D. J. Richardson. Analysis of light scattering from surface roughness in hollow-core photonic bandgap fibers. Opt. Express, 20, 20980-20991(2012).

    [50] W. Ding, S. R. Andrews, S. A. Maier. Internal excitation and superfocusing of surface plasmon polaritons on a silver-coated optical fiber tip. Phys. Rev. A, 75, 063822(2007).

    [51] T. D. Bradley, G. T. Jasion, J. R. Hayes, Y. Chen, L. Hooper, H. Sakr, M. Alonso, A. Taranta, A. Saljoghei, H. C. Mulvad, M. Fake, I. A. K. Davidson, N. V. Wheeler, E. N. Fokoua, W. Wang, S. R. Sandoghchi, D. J. Richardson, F. Poletti. Antiresonant hollow core fiber with 0.65  dB/km attenuation across the C and L telecommunication bands. European Conference on Optical Communication, PD3.1(2019).

    [52] Y. Chen, H. C. H. Mulvad, S. R. Sandoghchi, E. Numkam, T. D. Bradley, J. R. Hayes, N. V. Wheeler, G. T. Jasion, S. U. Alam, F. Poletti, M. N. Petrovich, D. J. Richardson. First demonstration of low loss, bend insensitive 37-cell hollow-core photonic bandgap fiber at 1  μm for high power delivery applications. Conference on Lasers and Electro-Optics, STu4P.1(2016).

    [53] M. Heiblum, J. Harris. Analysis of curved optical waveguides by conformal transformation. IEEE J. Quantum Electron., 11, 75-83(1975).

    [54] D. Marcuse. Microdeformation losses of single-mode fibers. Appl. Opt., 23, 1082-1091(1984).

    [55] E. N. Fokoua, Y. Chen, D. J. Richardson, F. Poletti. Microbending effects in hollow-core photonic bandgap fibers. European Conference on Optical Communication, Tu2F.3(2016).

    [56] M. A. Duguay, Y. Kokubun, T. L. Koch, L. Pfeiffer. Antiresonant reflecting optical waveguides in SiO2-Si multilayer structures. Appl. Phys. Lett., 49, 13-15(1986).

    Xinyu Chen, Wei Ding, Ying-Ying Wang, Shou-Fei Gao, Feixiang Xu, Huichao Xu, Yi-Feng Hong, Yi-Zhi Sun, Pu Wang, Yan-Qing Lu, Lijian Zhang. High-fidelity, low-latency polarization quantum state transmissions over a hollow-core conjoined-tube fiber at around 800 nm[J]. Photonics Research, 2021, 9(4): 460
    Download Citation