• Photonics Research
  • Vol. 12, Issue 4, 854 (2024)
Yan-Hui Deng1, Yu-Wei Lu1、2, Hou-Jiao Zhang1, Zhong-Hong Shi1, Zhang-Kai Zhou1、3、*, and Xue-Hua Wang1、4、*
Author Affiliations
  • 1State Key Laboratory of Optoelectronic Materials and Technologies, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
  • 2Quantum Science Center of Guangdong–Hong Kong–Macao Greater Bay Area (Guangdong), Shenzhen 518045, China
  • 3e-mail: zhouzhk@mail.sysu.edu.cn
  • 4e-mail: wangxueh@mail.sysu.edu.cn
  • show less
    DOI: 10.1364/PRJ.514576 Cite this Article Set citation alerts
    Yan-Hui Deng, Yu-Wei Lu, Hou-Jiao Zhang, Zhong-Hong Shi, Zhang-Kai Zhou, Xue-Hua Wang. Strong light–matter interactions based on excitons and the abnormal all-dielectric anapole mode with both large field enhancement and low loss[J]. Photonics Research, 2024, 12(4): 854 Copy Citation Text show less
    References

    [1] A. Reiserer, N. Kalb, G. Rempe. A quantum gate between a flying optical photon and a single trapped atom. Nature, 508, 237-240(2014).

    [2] Z.-K. Zhou, J. Liu, Y. Bao. Quantum plasmonics get applied. Prog. Quantum Electron., 65, 1-20(2019).

    [3] W. Zhang, J.-B. You, J. Liu. Steering room-temperature plexcitonic strong coupling: a diexcitonic perspective. Nano Lett., 21, 8979-8986(2021).

    [4] Q. Zhao, W.-J. Zhou, Y.-H. Deng. Plexcitonic strong coupling: unique features, applications, and challenges. J. Phys. D, 55, 203002(2022).

    [5] D. Jariwala, A. R. Dayoyan, G. Tagliabue. Near-unity absorption in van der Waals semiconductors for ultrathin optoelectronics. Nano Lett., 16, 5482-5487(2016).

    [6] X. Liu, M. C. Hersam. 2D materials for quantum information science. Nat. Rev. Mater., 4, 669-684(2019).

    [7] J. A. Hutchison, T. Schwartz, C. Genet. Modifying chemical landscapes by coupling to vacuum fields. Angew. Chem. Int. Ed. Engl., 51, 1592-1596(2012).

    [8] R. Liu, Z.-K. Zhou, Y.-C. Yu. Strong light-matter interactions in single open plasmonic nanocavities at the quantum optics limit. Phys. Rev. Lett., 118, 237401(2017).

    [9] J.-Y. Li, W. Li, J. Liu. Room-temperature strong coupling between a single quantum dot and a single plasmonic nanoparticle. Nano Lett., 22, 4686-4693(2022).

    [10] K. As’ham, I. Al-Ani, L. Huang. Boosting strong coupling in a hybrid WSe2 monolayer–anapole–plasmon system. ACS Photon., 8, 489-496(2021).

    [11] W. Li, R. Liu, J. Li. Highly efficient single-exciton strong coupling with plasmons by lowering critical interaction strength at an exceptional point. Phys. Rev. Lett., 130, 143601(2023).

    [12] H. Memmi, O. Benson, S. Sadofev. Strong coupling between surface plasmon polaritons and molecular vibrations. Phys. Rev. Lett., 118, 126802(2017).

    [13] K. Santhosh, O. Bitton, L. Chuntonov. Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit. Nat. Commun., 7, 11823(2016).

    [14] G. Zengin, M. Wersall, S. Nilsson. Realizing strong light-matter interactions between single-nanoparticle plasmons and molecular excitons at ambient conditions. Phys. Rev. Lett., 114, 157401(2015).

    [15] R. Chikkaraddy, B. de Nijs, F. Benz. Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature, 535, 127-130(2016).

    [16] H. Wang, Y. Ke, N. Xu. Resonance coupling in silicon nanosphere–J-aggregate heterostructures. Nano Lett., 16, 6886-6895(2016).

    [17] A. I. Kuznetsov, A. E. Miroshnichenko, M. L. Brongersma. Optically resonant dielectric nanostructures. Science, 354, aag2472(2016).

    [18] S. Lepeshov, M. Wang, A. Krasnok. Tunable resonance coupling in single Si nanoparticle-monolayer WS2 structures. ACS Appl. Mater. Interfaces, 10, 16690-16697(2018).

    [19] R. Verre, D. G. Baranov, B. Munkhbat. Transition metal dichalcogenide nanodisks as high-index dielectric Mie nanoresonators. Nat. Nanotechnol., 14, 679-683(2019).

    [20] S.-D. Liu, J.-L. Fan, W.-J. Wang. Resonance coupling between molecular excitons and nonradiating anapole modes in silicon nanodisk-J-aggregate heterostructures. ACS Photon., 5, 1628-1639(2018).

    [21] Y.-H. Deng, Z.-J. Yang, M.-L. Hu. Boosting an anapole mode response through electromagnetic interactions beyond near-field limit in individual all-dielectric disk-ring nanostructures. New J. Phys., 23, 023004(2021).

    [22] A. E. Miroshnichenko, A. B. Evlyukhin, Y. F. Yu. Nonradiating anapole modes in dielectric nanoparticles. Nat. Commun., 6, 8069(2015).

    [23] M. Qin, J. Duan, S. Xiao. Manipulating strong coupling between exciton and quasibound states in the continuum resonance. Phys. Rev. B, 105, 195425(2022).

    [24] M. Qin, S. Xiao, W. Liu. Strong coupling between excitons and magnetic dipole quasi-bound states in the continuum in WS2-TiO2 hybrid metasurfaces. Opt. Express, 29, 18026-18036(2021).

    [25] K. L. Koshelev, S. K. Sychev, Z. F. Sadrieva. Strong coupling between excitons in transition metal dichalcogenides and optical bound states in the continuum. Phys. Rev. B, 98, 161113(2018).

    [26] C. Gao, S. You, Y. Zhang. Strong coupling of excitons and electric/magnetic toroidal dipole modes in perovskite metasurfaces. Opt. Express, 31, 34143-34153(2023).

    [27] S. You, Y. Zhang, M. Fan. Strong light-matter interactions of exciton in bulk WS2 and a toroidal dipole resonance. Opt. Lett., 48, 1530-1533(2023).

    [28] J. Wang, W. Yang, G. Sun. Boosting anapole-exciton strong coupling in all-dielectric heterostructures. Photon. Res., 10, 1744-1753(2022).

    [29] X. Li, W. Liu, Y. Song. Two-photon-pumped high-quality, single-mode vertical cavity lasing based on perovskite monocrystalline films. Nano Energy, 68, 104334(2020).

    [30] K. Wang, S. Sun, C. Zhang. Whispering-gallery-mode based CH3NH3PbBr3 perovskite microrod lasers with high quality factors. Mater. Chem. Front., 1, 477-481(2017).

    [31] J. S. T. Gongora, A. E. Miroshnichenko, Y. S. Kivshar. Anapole nanolasers for mode-locking and ultrafast pulse generation. Nat. Commun., 8, 15535(2017).

    [32] K. Du, P. Li, K. Gao. Strong coupling between dark plasmon and anapole modes. J. Phys. Chem. Lett., 10, 4699-4705(2019).

    [33] D. Zheng, S. Zhang, Q. Deng. Manipulating coherent plasmon-exciton interaction in a single silver nanorod on monolayer WSe2. Nano Lett., 17, 3809-3814(2017).

    [34] M.-E. Kleemann, R. Chikkaraddy, E. M. Alexeev. Strong-coupling of WSe2 in ultra-compact plasmonic nanocavities at room temperature. Nat. Commun., 8, 1296(2017).

    [35] A. E. Schlather, N. Large, A. S. Urban. Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers. Nano Lett., 13, 3281-3286(2013).

    [36] R. Du, H. Hu, T. Fu. How to obtain the correct Rabi splitting in a subwavelength interacting system. Nano Lett., 23, 444-450(2023).

    [37] X. Wu, S. K. Gray, M. Pelton. Quantum-dot-induced transparency in a nanoscale plasmonic resonator. Opt. Express, 18, 23633-23645(2010).

    [38] J. Sun, H. Hu, D. Zheng. Light-emitting plexciton: exploiting plasmon-exciton interaction in the intermediate coupling regime. ACS Nano, 12, 10393-10402(2018).

    [39] V. G. Kravets, A. V. Kabashin, W. L. Barnes. Plasmonic surface lattice resonances: a review of properties and applications. Chem. Rev., 118, 5912-5951(2018).

    [40] T. J. Seok, A. Jamshidi, M. Kim. Radiation engineering of optical antennas for maximum field enhancement. Nano Lett., 11, 2606-2610(2011).

    [41] R. Liu, Z. Liao, Y.-C. Yu. Relativity and diversity of strong coupling in coupled plasmon-exciton systems. Phys. Rev. B, 103, 235430(2021).

    [42] M. D. Leistikow, J. Johansen, A. J. Kettelarij. Size-dependent oscillator strength and quantum efficiency of CdSe quantum dots controlled via the local density of states. Phys. Rev. B, 79, 045301(2009).

    [43] L. Lin, J. Xue, H. Xu. Integrating lattice and gap plasmonic modes to construct dual-mode metasurfaces for enhancing light-matter interaction. Sci. China Mater., 64, 3007-3016(2021).

    [44] Y. Yang, V. A. Zenin, S. I. Bozhevolnyi. Anapole-assisted strong field enhancement in individual all-dielectric nanostructures. ACS Photon., 5, 1960-1966(2018).

    [45] E. A. Gurvitz, K. S. Ladutenko, P. A. Dergachev. The high-order toroidal moments and anapole states in all-dielectric photonics. Laser Photon. Rev., 13, 1800266(2019).

    [46] R. Alaee, C. Rockstuhl, I. Fernandez-Corbaton. An electromagnetic multipole expansion beyond the long-wavelength approximation. Opt. Commun., 407, 17-21(2018).

    [47] C. Zhou, S. Li, M. Fan. Optical radiation manipulation of Si-Ge2Sb2Te5 hybrid metasurfaces. Opt. Express, 28, 9690-9701(2020).

    [48] Y.-H. Deng, Z.-J. Yang, J. He. Plasmonic nanoantenna-dielectric nanocavity hybrids for ultrahigh local electric field enhancement. Opt. Express, 26, 31116-31128(2018).

    [49] H. Xu, Z. Zhu, J. Xue. Giant enhancements of high-order upconversion luminescence enabled by multiresonant hyperbolic metamaterials. Photon. Res., 9, 395-404(2021).

    [50] B. Gerislioglu, A. Ahmadivand. Theoretical study of photoluminescence spectroscopy of strong exciton-polariton coupling in dielectric nanodisks with anapole states. Mater. Today Chem., 16, 100254(2020).

    [51] T. Mahinroosta, S. M. Hamidi. The bull’s-eye structure as a new plexcitonic circular grating. Appl. Phys. A, 128, 1043(2022).

    [52] C. Van Vlack, P. T. Kristensen, S. Hughes. Spontaneous emission spectra and quantum light-matter interactions from a strongly coupled quantum dot metal-nanoparticle system. Phys. Rev. B, 85, 075303(2012).

    [53] E. C. Andre, I. E. Protsenko, A. V. Uskov. On collective Rabi splitting in nanolasers and nano-LEDs. Opt. Lett., 44, 1415-1418(2019).

    Yan-Hui Deng, Yu-Wei Lu, Hou-Jiao Zhang, Zhong-Hong Shi, Zhang-Kai Zhou, Xue-Hua Wang. Strong light–matter interactions based on excitons and the abnormal all-dielectric anapole mode with both large field enhancement and low loss[J]. Photonics Research, 2024, 12(4): 854
    Download Citation