• Journal of Inorganic Materials
  • Vol. 35, Issue 3, 293 (2020)
Lijia DONG1, Xiaojie GUO2, Xue LI1, Chaogui CHEN1, Yang JIN1、*, Alsaedi AHMED3, Hayat TASAWAR3、4, Qingzhou ZHAO5, and Guodong SHENG6、*
Author Affiliations
  • 1School of Life Science, Shaoxing University, Shaoxing 312000, China
  • 2College of Materials & Environmental Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
  • 3NAAM Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
  • 4Department of Mathematics, Quaid-I-Azam University, Islamabad 44000, Pakistan
  • 5College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
  • 6College of Chemistry and Chemical Engineering, Shaoxing Univeristry, Shaoxing 312000, China
  • show less
    DOI: 10.15541/jim20190381 Cite this Article
    Lijia DONG, Xiaojie GUO, Xue LI, Chaogui CHEN, Yang JIN, Alsaedi AHMED, Hayat TASAWAR, Qingzhou ZHAO, Guodong SHENG. Microscopic Insights into pH-dependent Adsorption of Cd(II) on Molybdenum Disulfide Nanosheets[J]. Journal of Inorganic Materials, 2020, 35(3): 293 Copy Citation Text show less
    References

    [1] G ZENG, Y LIU, L TANG et al. Enhancement of Cd(II) adsorption by polyacrylic acid modified magnetic mesoporous carbon. Chem. Eng. J., 259, 153-160(2015).

    [2] G YANG, L TANG, X LEI et al. Cd(II) removal from aqueous solution by adsorption on ketoglutaric acid-modified magnetic chitosan. Appl. Surf. Sci., 292, 710-716(2014).

    [3] L LUO, B MA Y, Z ZHANG S et al. An inventory of trace element inputs to agricultural soils in China. J. Environ. Manage, 90, 2524-2530(2009).

    [4] A KHAN T, A CHAUDHRY S, I ALI. Equilibrium uptake, isotherm and kinetic studies of Cd(II) adsorption onto iron oxide activated red mud from aqueous solution. J. Mol. Liq., 202, 165-175(2015).

    [5] R AWUAL M, M KHRAISHEH, H ALHARTHI N et al. Efficient detection and adsorption of cadmium(II) ions using innovative nano-composite materials. Chem. Eng. J., 343, 118-127(2018).

    [6] Q LIAO, D ZOU, W PAN et al. Highly-efficient scavenging of P(V), Cr(VI), Re(VII) anions onto g-C3N4 nanosheets from aqueous solutions as impacted via water chemistry.. J. Mol. Liq., 258, 275-284(2018).

    [7] L DONG, J YANG, Y MOU et al. Effect of various environmental factors on the adsorption of U(VI) onto biochar derived from rice straw. J. Radioanal. Nucl. Chem., 314, 377-386(2017).

    [8] D SHENG G, Q YANG, F PENG et al. Determination of colloidal pyrolusite, Eu(III) and humic substance interaction: a combined batch and EXAFS approach. Chem. Eng. J., 245, 10-16(2014).

    [9] J YU S, X WANG X, W PANG H et al. Boron nitride-based materials for the removal of pollutants from aqueous solutions: a review. Chem. Eng. J., 333, 343-360(2018).

    [10] W YAO, X WANG, Y LIANG et al. Synthesis of novel flower-like layered double oxides/carbon dots nanocomposites for U(VI) and 241Am(III) efficient removal: batch and EXAFS studies. Chem. Eng. J., 332, 775-786(2018).

    [11] J WANG, X WANG X, X ZHAO G et al. Polyvinylpyrrolidone and polyacrylamide intercalated molybdenum disulfide as adsorbents for enhanced removal of chromium(VI) from aqueous solutions. Chem. Eng. J., 334, 569-578(2018).

    [12] Q LIAO, S ZOU D, W PAN et al. Highly efficient capture of Eu(III), La(III), Nd(III), Th(IV) from aqueous solutions using g-C3N4 nanosheets. J. Mol. Liq., 252, 351-361(2018).

    [13] X WANG X, J YU S, K WANG X. Removal of radionuclides by metal-organic framework-based materials. J. Inorg. Mater., 34, 17-26(2019).

    [14] N WANG, H PANG, S YU et al. Investigation of adsorption mechanism of layered double hydroxides and their composites on radioactive uranium: a review. Acta Chim. Sinica, 77, 143-152(2019).

    [15] X LIU, R MA, X WANG et al. Graphene oxide-based materials for efficient removal of heavy metal ions from aqueous solution: a review. Environ. Pollut., 252, 62-73(2019).

    [16] X WANG X, L CHEN, L WANG et al. Synthesis of novel nanomaterials and their application in efficient removal of radionuclides. Sci. China Chem., 62, 933-967(2019).

    [17] B FENG, C YAO, S CHEN et al. Highly efficient and selective recovery of Au(III) from a complex system by molybdenum disulfide nanoflakes. Chem. Eng. J., 350, 692-702(2018).

    [18] J CHEN H, J HUANG, L LEI X et al. Adsorption and diffusion of lithium on MoS2 monolayer: the role of strain and concentration.. Int. J. Electrochem. Sci., 8, 2196-2203(2013).

    [19] F JIA, Q WANG, J WU et al. Two-dimensional molybdenum disulfide as a superb adsorbent for removing Hg+ from water.. ACS Sustainable Chem. Eng., 5, 7410-7419(2017).

    [20] F JIA, X ZHANG, S SONG. AFM study on the adsorption of Hg 2+ on natural molybdenum disulfide in aqueous solutions. Phys. Chem. Chem. Phys., 19, 3837-3844(2017).

    [21] Z WANG, B MI. Environmental applications of 2D molybdenum disulfide (MoS2) nanosheet. Environ. Sci. Technol., 51, 8229-8244(2017).

    [22] K AI, C RUAN, M SHEN et al. MoS2 nanosheets with widened interlayer spacing for high-efficiency removal of mercury in aquatic systems.. Adv. Funct. Mater., 26, 5542-5549(2016).

    [23] S TONG, H DENG, L WANG et al. Multi-functional nanohybrid of ultrathin molybdenum disulfide nanosheets decorated with cerium oxide nanoparticles for preferential uptake of lead (II) ions. Chem. Eng. J., 335, 22-31(2018).

    [24] X LI, Q LI, W LINGHU et al. Sorption properties of U(VI) and Th(IV) on two-dimensional molybdenum disulfide (MoS2) nanosheets: effects of pH, ionic strength, contact time, humic acids and temperature.. Environ. Technol. Innov., 11, 328-338(2018).

    [25] Q WANG, L YANG, F JIA et al. Removal of Cd(II) from water by using nano-scale molybdenum disulphide sheets as adsorbents. J. Mol. Liq., 263, 526-533(2018).

    [26] L ZHI, W ZUO, F CHEN et al. 3D MoS2 composition aerogel as chemosensors and adsorbents for colorimetric detection and high- capacity adsorption of Hg2+.. ACS Sustain. Chem. Eng., 4, 3398-3408(2016).

    [27] K AI, C RUAN, M SHEN et al. MoS2 nanosheets with widened interlayer spacing for high-efficiency removal of mercury in aquatic systems.. Adv. Funct. Mater., 26, 5542-5549(2016).

    [28] J AGHAGOLI M, H BEYKI M, F SHEMIRANI. Application of dahlia-like molybdenum disulfide nanosheets for solid phase extraction of Co(II) in vegetable and water samples. Food Chem., 223, 8-15(2017).

    [29] X GAO, D SHENG G, Y HUANG Y. Mechanism and microstructure of Eu(III) interaction with γ-MnOOH by a combination of batch and high resolution EXAFS investigation.. Sci. China Chem., 56, 1658-1666(2013).

    [30] L DONG, Q LIAO, W LINGHU et al. Application of EXAFS with a bent crystal analyzer to study the pH-dependent microstructure of Eu(III) onto birnessite. J. Environ. Chem. Eng., 6, 842-848(2018).

    [31] F VASCONCELOS I, A HAACK E, A MAURICE P et al. EXAFS analysis of cadmium(II) adsorption to kaolinite.. Chem. Geol., 249, 237-249(2008).

    [32] C LIU, I FRENKEL A, A VAIRAVAMURTHY et al. Sorption of cadmium on humic acid: mechanistic and kinetic studies with atomic force microscopy and X-ray absorption fine structure spectroscopy. Can. J. Soil Sci., 81, 337-348(2001).

    [33] D SHENG G, T YANG S, M LI Y et al. Retention mechanisms and microstructure of Eu(III) on manganese dioxides studied by batch and high resolution EXAFS technique. Radiochim. Acta, 102, 155-167(2014).

    [34] N COLEMAN J, M LOTYA, A O’NEILL et al. Two dimensional nanosheets produced by liquid exfoliation of layered materials.. Science, 331, 568-571(2011).

    [35] A SPLENDIANI, L SUN, Y ZHANG et al. Emerging photoluminescence in monolayer MoS2.. Nano Lett., 10, 1271-1275(2010).

    [36] K KUMAR A S, J JIANG S, K WARCHOL J. Synthesis and characterization of two-dimensional transition metal dichalcogenide magnetic MoS2@Fe3O4 nanoparticles for adsorption of Cr(VI)/Cr(III). ACS Omega, 2, 6187-6200(2017).

    [37] R TAKAMATSU, K ASAKURA, J CHUN W et al. EXAFS studies about the sorption of cadmium ions on montmorillonite. Chem. Lett., 35, 224-225(2006).

    [38] X HUANG, T CHEN, X ZOU et al. The adsorption of Cd(II) on manganese oxide investigated by batch and modeling techniques. Int. J. Environ. Res. Public Health, 14, 1145(2017).

    [39] E GUECHI, D BEGGAS. Removal of cadmium (II) from water using fibre fruit lufa as biosorbent. Desalin. Water Treat., 94, 181-188(2017).

    [40] A ABASIYAN S M, R MAHDANINIA G. Polyvinyl alcohol- based nanocomposite hydrogels containing magnetic laponite RD to remove cadmium. Environ. Sci. Poll. Res., 25, 14977-14988(2018).

    [41] F CORBETT J. Pseudo first-order kinetics. J. Chem. Educ., 49, 663(1972).

    [42] S HO Y, G MCKAY. A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents. Process. Saf. Environ., 76, 332-340(1998).

    [43] H GRAAF G, H SCHOLTENS, J STAMHUIS E et al. Intra-particle diffusion limitations in low-pressure methanol synthesis. Chem. Eng. Sci., 45, 773-783(1990).

    [44] S HO Y, G MCKAY. The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Rer., 34, 735-742(2000).

    [45] J TEMKIN M, V PYZHEV. Recent modifications to Langmuir isotherms. Acta Physchim, 12, 217-222(1940).

    [46] C XUE, S QI P, Z LIU Y. Adsorption of aquatic Cd 2+ using a combination of bacteria and modified carbon fiber. Adsorpt. Sci. Technol., 36, 857-871(2017).

    [47] P GU, S ZHANG, C ZHANG et al. Two-dimensional MAX- derived titanate nanostructures for efficient removal of Pb(II). Dalton Trans., 48, 2100-2107(2019).

    [48] W CHEN, Z LU, B XIAO et al. Enhanced removal of lead ions from aqueous solution by iron oxide nanomaterials with cobalt and nickel doping. J. Clean. Prod., 211, 1250-1258(2019).

    [49] D ZHANG, Y NIU H, L ZHANG X et al. Strong adsorption of chlorotetracycline on magnetite nanoparticles. J. Hazard. Mater., 192, 1088-1093(2011).

    [50] H ZHANG, X YU, L CHEN et al. Study of 63Ni adsorption on NKF-6 zeolite.. J. Environ. Radioact., 101, 1061-1069(2010).

    [51] Z BEKCI, Y SEKI, K YURDAKOC M. A study of equilibrium and FTIR, SEM/EDS analysis of trimethoprim adsorption onto K10. J. Mol. Struct., 827, 67-74(2007).

    [52] M GRÄFE, B SINGH, M BALASUBRAMANIAN. Surface speciation of Cd(II) and Pb(II) on kaolinite by EXAFS spectroscopy. J. Colloid Interf. Sci., 315, 21-32(2007).

    [53] G SHENG, H DONG, R SHEN et al. Microscopic insights into the temperature dependent adsorption of Eu(III) onto titanate nanotubes studied by FTIR, XPS, XAFS and batch technique. Chem. Eng. J., 217, 486-494(2013).

    Lijia DONG, Xiaojie GUO, Xue LI, Chaogui CHEN, Yang JIN, Alsaedi AHMED, Hayat TASAWAR, Qingzhou ZHAO, Guodong SHENG. Microscopic Insights into pH-dependent Adsorption of Cd(II) on Molybdenum Disulfide Nanosheets[J]. Journal of Inorganic Materials, 2020, 35(3): 293
    Download Citation