• Laser & Optoelectronics Progress
  • Vol. 56, Issue 3, 031004 (2019)
Jichang Guo*, Huiwen Wei, Yanhong He, and Xiangyuan Gu
Author Affiliations
  • School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China
  • show less
    DOI: 10.3788/LOP56.031004 Cite this Article Set citation alerts
    Jichang Guo, Huiwen Wei, Yanhong He, Xiangyuan Gu. Enhancing Image Steganographic Security Using Daubechies Wavelet[J]. Laser & Optoelectronics Progress, 2019, 56(3): 031004 Copy Citation Text show less
    References

    [1] Li B, He J H, Huang J W et al. A survey on image steganography and steganalysis[J]. Journal of Information Hiding and Multimedia Signal Processing, 2, 142-172(2011).

    [2] Pevny T, Filler T, Bas P. Using high-dimensional image models to perform highly undetectable steganography. [C]∥International Conference on Information Hiding, 161-177(2010).

    [3] Zhou W B, Zhang W M, Yu N H. A new rule for cost reassignment in adaptive steganography[J]. IEEE Transactions on Information Forensics and Security, 12, 2654-2667(2017). http://ieeexplore.ieee.org/document/7954658/

    [4] Holub V, Fridrich J. Designing steganographic distortion using directional filters. [C]∥IEEE International Workshop on Information Forensics and Security, 234-239(2012).

    [5] Holub V, Fridrich J, Denemark T. Universal distortion function for steganography in an arbitrary domain[J]. EURASIP Journal on Information Security, 2014, 1(2014). http://link.springer.com/article/10.1186/1687-417X-2014-1

    [6] Wang L F, Guo J C, Tian Y H. Spatial adaptive steganography based on non-directional filter[J]. Laser & Optoelectronics Progress, 54, 021003(2017).

    [7] Tang W X, Tan S Q, Li B et al. Automatic steganographic distortion learning using a generative adversarial network[J]. IEEE Signal Processing Letters, 24, 1547-1551(2017). http://ieeexplore.ieee.org/document/8017430/

    [8] Li B, Tan S Q, Wang M et al. Investigation on cost assignment in spatial image steganography[J]. IEEE Transactions on Information Forensics and Security, 9, 1264-1277(2014). http://dl.acm.org/citation.cfm?id=2771302.2771981

    [9] Sedighi V, Fridrich J, Cogranne R. Content-adaptive pentary steganography using the multivariate generalized Gaussian cover model[J]. Proceedings of SPIE, 9409, 94090H(2015). http://proceedings.spiedigitallibrary.org/article.aspx?articleid=2195417

    [10] Sedighi V, Cogranne R, Fridrich J. Content-adaptive steganography by minimizing statistical detectability[J]. IEEE Transactions on Information Forensics and Security, 11, 221-234(2016). http://ieeexplore.ieee.org/document/7289422/

    [11] Li B, Wang M, Li X L et al. A strategy of clustering modification directions in spatial image steganography[J]. IEEE Transactions on Information Forensics and Security, 10, 1905-1917(2015). http://ieeexplore.ieee.org/document/7109899/

    [12] Denemark T, Fridrich J. Improving steganographic security by synchronizing the selection channel. [C]∥ACM Workshop on Information Hiding and Multimedia Security, 5-14(2015).

    [13] Li B, Wang M, Huang J W et al. A new cost function for spatial image steganography. [C]∥IEEE International Conference on Image Processing, 4206-4210(2014).

    [14] Filler T, Judas J, Fridrich J. Minimizing additive distortion in steganography using syndrome-trellis codes[J]. IEEE Transactions on Information Forensics and Security, 6, 920-935(2011). http://ieeexplore.ieee.org/document/5740590

    [15] Xu G S, Wu H Z, Shi Y Q. Structural design of convolutional neural networks for steganalysis[J]. IEEE Signal Processing Letters, 23, 708-712(2016). http://ieeexplore.ieee.org/document/7444146/

    [16] Fridrich J, Filler T. Practical methods for minimizing embedding impact in steganography[J]. Proceedings of SPIE, 6505, 650502(2007). http://spie.org/Publications/Proceedings/Paper/10.1117/12.697471

    [17] Fridrich J, Kodovsky J. Rich models for steganalysis of digital images[J]. IEEE Transactionson Information Forensics and Security, 7, 868-882(2012). http://ieeexplore.ieee.org/document/6197267/

    [18] Ye J, Ni J Q, Yi Y. Deep learning hierarchical representations for image steganalysis[J]. IEEE Transactions on Information Forensics and Security, 12, 2545-2557(2017). http://ieeexplore.ieee.org/document/7937836

    [19] Tang W, Li H, Luo W. Adaptive steganalysis against WOW embedding algorithm. [C]∥ACM Workshop on Information Hiding and Multimedia Security, 91-96(2014).

    [20] Xu G. Deep convolutional neural network to detect J-UNIWARD. [C]∥ACM Workshop on Information Hiding and Multimedia Security, 67-73(2017).

    [21] Li J, Chen S J, Lei M et al. A fully optical method for compressive optical image hiding[J]. Acta Optica Sinica, 37, 1110003(2017).

    [22] Pevny T, Bas P, Fridrich J. Steganalysis by subtractive pixel adjacency matrix[J]. IEEE Transactions on Information Forensics and Security, 5, 215-224(2010). http://doi.acm.org/10.1145/1597817.1597831

    [23] Wang Z J, Yu Z J, Ma K et al. An image filtering algorithm based on adaptive median and gradient inverse weight[J]. Laser & Optoelectronics Progress, 54, 121001(2017).

    [24] Daubechies I. Orthonormal bases of compactly supported wavelets[J]. Communications on Pure and Applied Mathematics, 41, 909-996(1988). http://onlinelibrary.wiley.com/doi/10.1002/cpa.3160450502/pdf

    [25] Bas P, Filler T. Pevn T. "Break our steganographic system": the ins and outs of organizing BOSS [M]. Heidelberg: Springer, 59-70(2011).

    [26] Kodovsky J, Fridrich J, Holub V. Ensemble classifiers for steganalysis of digital media[J]. IEEE Transactions on Information Forensics and Security, 7, 432-444(2012). http://ieeexplore.ieee.org/document/6081929/