• Journal of Inorganic Materials
  • Vol. 34, Issue 3, 269 (2019)
Xiao-Kai HU1、4, Shuang-Meng ZHANG1, Fu ZHAO1、2, Yong LIU1、3, Wei-Shu LIU1, [in Chinese]1、4, [in Chinese]1, [in Chinese]1、2, [in Chinese]1、3, and [in Chinese]1
Author Affiliations
  • 11. Department of Material Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
  • 22. Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China
  • 33. AECC Beijing Institute of Aeronautical Materials, Beijing 100095, China
  • 44. Institute for Frontier Materials, Deakin University, Geelong 3216, Australia
  • show less
    DOI: 10.15541/jim20180248 Cite this Article
    Xiao-Kai HU, Shuang-Meng ZHANG, Fu ZHAO, Yong LIU, Wei-Shu LIU, [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Thermoelectric Device: Contact Interface and Interface Materials[J]. Journal of Inorganic Materials, 2019, 34(3): 269 Copy Citation Text show less
    References

    [3] M ZHANG S, S LIU W, Z HU J et al. New trends, strategies and opportunities in thermoelectric materials: a perspective. Mater. Today Phys., 1, 50-60(2017).

    [4] J ZHU T, T LIU Y, G FU C et al. Compromise and synergy in high efficiency thermoelectric materials. Adv. Mater, 29, 1605884(2017).

    [5] D ZHAO L, S LIU W, F LI J et al. High-performance nanostructured thermoelectric materials. NPGAsia Mater., 2, 152-158(2010).

    [6] M ZEBARJADI, S DRESSELHAUS M, K ESFARJANI et al. Perspectives on thermoelectrics: from fundamentals to device applications. Energy Environ. Sci., 5, 5147-5162(2012).

    [7] Z XIONG, D CHEN L, Q BAI S. Recent progress of thermoelectric nano-composites. Journal ofInorganic Materials, 25, 561-568(2010).

    [8] C LIU Y, B ZHAN, Z LAN J et al. Research progress of oxides thermoelectric materials. Journal ofInorganic Materials, 29, 237-244(2014).

    [9] G CHEN, F TANG X, X LIU T et al. Optimization of electrode material and connecting process for Mg-Si-Sn based thermoelectric device. Journal ofInorganic Materials, 30, 639-646(2015).

    [10] C FU, S BAI, Y LIU et al. Realizing high figure of merit in heavy band p-type half-Heusler thermoelectric materials. Nat. Comm., 6, 8144-8151(2015).

    [11] X HU, M OHTA, P JOOD et al. Power genaration of nanostructured PbTe-based thermoelectrics: comprehensive development from materials to modules. Energy Environ. Sci., 9, 517-529(2016).

    [12] D KRAEMER, K MCENANEY, Q JIE et al. Concentrating solar thermoelectric generator with a peak efficiency of 7.4%. Nature Energy, 1, 1-8(2016).

    [13] Q ZHANG, J LIAO, Y TANG et al. Realizing a thermoelectric conversion efficiency of 12% in bismuth telluride/skutterudite segmented modules through full-parameter optimization and energy-loss minimized integration. Energy Environ. Sci., 10, 956-963(2017).

    [14] P QIU, Y TANG, F HAO et al. High efficiency Bi2Te3-based materials and devices for thermoelectric power generation between 100 and 300℃. Energy Environ. Sci., 9, 3120-3127(2016).

    [17] E HATZIKRANIOTIS, T ZORBAS K, I SAMARAS et al. Efficiency study of a commercial thermoelectric power generator (TEG) under thermal cycling. J. Electron. Mater., 39, 2112-2116(2010).

    [18] M MARCONNET A, T BARAKO M, W PARK. et al. Effect of thermal cycling on commercial thermoelectric modules. 13th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, San Diego, 16, 107-112(2012).

    [19] TH CLIN, S TURENNE, D VASILEVSKIYet al.Numerical simulation of the thermomechanical behavior of extruded bismuth telluride alloy module. J. Electro. Mater., 38, 994-1001(2009).

    [20] S LIU W, T WANG, S KIM H et al. Engineering thermal conductivity for balancing between reliability and performance of bulk thermoelectric generators. Adv. Funct. Mater., 26, 3678-3686(2016).

    [21] H WANG, S LIU W, L WANG et al. Understanding of the contact of nanostructured thermoelectric n-type Bi2Te2.7Se0.3 legs for power generation applications. J. Mater. Chem. A, 1, 13093-13100(2013).

    [22] Z WANG D, p-type tin in, C LAN Y, Bi2 n-type, G CHEN, 92, 1-3(2008).

    [23] M. ROWE D. CRC Handbook of Thermoelectrics., 479-485(1995).

    [24] S KIM H, J QING, S LIU W et al. Current progress and future challenges in thermoelectric power generation: from materials to devices. Acta Materialia, 87, 357-376(2015).

    [25] V HABA. Method and Materials For Obtaining Low Resistance Bond to Bismuth Telluride. US Patent, 3017693, 3079455, 1963(1962).

    [26] D ROSI F, A BERNOFF R. Method and Materials for Obtaining Low Resistance Bonds to Thermoelectric Bodies. US Patent, 3037064, 1962.

    [27] H LEE C, J CHEN W, N LIAO C. Effect of interfacial compound formation on contact resistivity of soldered junction between bismuth telluride based thermoelements and copper. Electrochem. Solid-State Lett., 10, 23-25(2007).

    [28] R SEILER M, J MENGALI O. Contact resistance studies on thermoelectric materials. Adv. Energy Conversion, 2, 59-68(1962).

    [29] L H WEITZMAN. Etching Bismuth Telluride.US Patent, 3338765, 1967.

    [30] R MADDUX J, G MEISSNER, J TALOR Pet al. Controlled improvement in specific contact resistivity for thermoelectric materials by ion implantation. Appl. Phys. Lett., 103, 1-4(2013).

    [31] P LIN W, E WESOLOWSKI D, C LEE C. Barrier/bonding layers on bismuth telluride for high temperature thermoelectric modules. J. Mater. Sci.: Mater. Electron., 22, 1313-1320(2011).

    [32] D IYORE O. Interface Characterization of Contacts to Bulk Bismuth Telluride Alloys. Richardson, TX: University of Texas at Dallas, Master’s Thesis, UMI No, 1470835, 2009.

    [33] S CHEN, B YU, P FENG H. et al. Studies on surface preparation and smoothness of nanostructured Bi2Te3-based alloys by electrochemical and mechanical methods. Electrochimica Acta, 56, 3079-3084(2011).

    [34] H LEE T, P GUPTA R, D IYORE O et al. Interface characterization of nickel contact to bulk bismuth telluride selenide. Surf. Interface Analysis, 41, 440-444(2009).

    [35] I MLAVSKY A, M WEINSTEIN. Bonding of lead telluride to pure iron electrodes. Rev. Sci. Instrum., 33, 1119-1120(1962).

    [36] A SINGH, S BHATTACHARYA, C THINAHARAN et al. Development of low resistance electrical contacts for thermoelectric devices based on n-type PbTe and p-type TAGS-85 ((AgSbTe2)0.15(GeTe)0.85). J. Phys. D: Appl. Phys., 42, 1-6(2008).

    [37] A LEAVITT F, W MCCOY J, P MARUDHACHALAM et al. Segmented Thermoelectric Module with Bonded Legs. US Patent. Segmented Thermoelectric Module with Bonded Legs. US Patent, A1, 2012(2012).

    [38] H XIA, L CHEN C, F DRYMIOTIS et al. Bonding and high-temperature reliability of NiFeMo alloy/n-type PbTe joints for thermoelectric module applications. J. Mater. Sci., 50, 2700-2708(2015).

    [39] L CHEN C, F DRYMIOTIS, H XIA et al. Bonding and interfacial reaction between Ni foil and n-type PbTe thermoelectric materials for thermoelectric module applications. J. Mater. Sci., 49, 1716-1723(2014).

    [40] F DRYMIOTIS, L CHEN C, H XIA et al. Interfacial reaction between Nb foil and n-type PbTe thermoelectric materials during thermoelectric contact fabrication. J. Electro. Mater., 43, 4064-4069(2014).

    [41] M ORIHASHI, L CHEN, Y NODA et al. Ni/n-PbTe and Ni/p-Pb0.5Sn0.5Te Joining by Plasma Activated Sintering, 543-546(1998).

    [42] R FERRERES X, M NANCARROW, A YAMINI S et al. One-step bonding of Ni electrode to n-type PbTe — a step towards fabrication of thermoelectric generators. Materials and Design, 107, 90-97(2016).

    [43] C LI C, L LIAO L, F DRYMIOTIS et al. Interfacial reactions between PbTe-based thermoelectric materials and Cu and Ag bonding materials. J. Mater. Chem. C, 3, 10590-10596(2015).

    [44] A KALTZOGLOU, J GARCIA-CANADAS, V POWELL A et al. Fabrication and evaluation of a skutterudite-based thermoelectric module for high-temperature applications. J. Electro. Mater., 42, 1369-1374(2013).

    [45] X SHI, M GU, C FAN X et al. Fabrication and reliability evaluation of Yb0.3Co4Sb12/Mo-Ti/Mo-Cu/Ni thermoelectric joints. Ceramics International, 41, 7590-7595(2015).

    [46] Z YE, Y CHO J, R SALVADOR J et al. Conversion efficiency of skutterudite-based thermoelectric modules. Phys. Chem. Chem. Phys., 16, 12510-12520(2014).

    [47] Q BAI S, D CHEN L, F FAN J et al. Joining of Mo to CoSb3 by spark plasma sintering by inserting a Ti interlayer. Materials Letters, 58, 3876-3878(2004).

    [48] R GENG H, Y TENG X, G ZHAO D. Fabrication and reliabilityevaluation of CoSb3/W-Cu thermoelectric element. J. Alloys Compd., 517, 198-203(2012).

    [49] G ZHAO D, W JIANG, Y LI X et al. Fabrication of CoSb3/MoCu thermoelectric joint by one-step SPS and evaluation. Journal of Inorganic Materials, 24, 545-548(2009).

    [50] M GU, Y LI X, G XIA X et al. Microstructural evolution of the interfacial layer in the Ti-Al/Yb0.6Co4Sb12 thermoelectric joints at high temperature. J. Alloys Compd., 610, 665-670(2014).

    [51] S TANG Y, Q BAI S, D REN D et al. Interface structure and electrical property of Yb0.3Co4Sb12/Mo-Cu element prepared by welding using Ag-Cu-Zn solder. Journal of Inorganic Materials, 30, 256-260(2015).

    [52] M GU, Q BAI S, Y HUANG X, G XIA X et al. Study on the interfacial stability of p-type Ti/CeyFexCo4-xSb12 thermoelectric joints at high temperature. J. Alloys Compd., 671, 238-244(2016).

    [53] P FLEURIAL J, J SNYDER G, T CAILLAT et al. Development of High Efficiency Segmented Thermoelectric Unicouples. Proceedings of 20th Int. Conf. on Thermoelectrics, Beijing, 504, 282-285(2001).

    [54] T CAILLAT, P FLEURIAL J, C CHI S. Electrical Contacts for Skutterudite Thermoelectric Materials.US Patent, 20120006376, A1, 2012.

    [55] T OCHI, Y GENG H, Q GUO J et al. Development of skutterudite thermoelectric materials and modules. J. Electro. Mater., 41, 1036-1042(2012).

    [56] B POUDEL, A MUTO, J YANG et al. Skutterudite unicouple characterization for energy harvesting applications. Adv. Energy Mater., 3, 245-251(2013).

    Xiao-Kai HU, Shuang-Meng ZHANG, Fu ZHAO, Yong LIU, Wei-Shu LIU, [in Chinese], [in Chinese], [in Chinese], [in Chinese], [in Chinese]. Thermoelectric Device: Contact Interface and Interface Materials[J]. Journal of Inorganic Materials, 2019, 34(3): 269
    Download Citation