• Matter and Radiation at Extremes
  • Vol. 7, Issue 5, 058401 (2022)
J. E. Hirsch1、a) and F. Marsiglio2
Author Affiliations
  • 1Department of Physics, University of California, San Diego, La Jolla, California 92093-0319, USA
  • 2Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1, Canada
  • show less
    DOI: 10.1063/5.0091404 Cite this Article
    J. E. Hirsch, F. Marsiglio. Clear evidence against superconductivity in hydrides under high pressure[J]. Matter and Radiation at Extremes, 2022, 7(5): 058401 Copy Citation Text show less
    References

    [1] A. P.Drozdov, S. I.Shylin, I. A.Troyan, V.Ksenofontov, M. I.Eremets. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature, 525, 73-76(2015).

    [2] I. A.Troyan, M. I.Eremets, A. P.Drozdov. Conventional superconductivity at 190 K at high pressures(2014).

    [3] D. V.Semenok et al. On distribution of superconductivity in metal hydrides. Curr. Opin. Solid State Mater. Sci., 24, 100808(2020).

    [4] G.Gao et al. Superconducting binary hydrides: Theoretical predictions and experimental progresses. Mater. Today Phys., 21, 100546(2021).

    [5] X.Zhang et al. Pressure-induced hydride superconductors above 200 K. Matter Radiat. Extremes, 6, 068201(2021).

    [6] J.Carbotte, K.Bennemann, F.Marsiglio, and K.Bennemann, J.Ketterson. Superconductivity, 73(2008).

    [7] I.Errea, C. J.Pickard, M. I.Eremets. Superconducting hydrides under pressure. Annu. Rev. Condens. Matter Phys., 11, 57(2020).

    [8] J. A.Flores-Livas et al. A perspective on conventional high-temperature superconductors at high pressure: Methods and materials. Phys. Rep., 856, 1(2020).

    [9] B.Lilia et al. The 2021 room-temperature superconductivity roadmap. J. Phys.: Condens. Matter, 34, 183002(2022).

    [10] J. E.Hirsch, F.Marsiglio. Absence of high temperature superconductivity in hydrides under pressure(2020).

    [11] J. E.Hirsch, F.Marsiglio. Nonstandard superconductivity or no superconductivity in hydrides under high pressure. Phys. Rev. B, 103, 134505(2021).

    [12] J. E.Hirsch, F.Marsiglio. Meissner effect in nonstandard superconductors. Physica C, 587, 1353896(2021).

    [13] F.Marsiglio, J. E.Hirsch. Absence of magnetic evidence for superconductivity in hydrides under high pressure. Physica C, 584, 1353866(2021).

    [14] J. E.Hirsch, F.Marsiglio. Flux trapping in superconducting hydrides under high pressure. Physica C, 589, 1353916(2021).

    [15] F.Marsiglio, J. E.Hirsch. Unusual width of the superconducting transition in a hydride. Nature, 596, E9(2021).

    [16] J. E.Hirsch, F.Marsiglio. Absence of evidence of superconductivity in sulfur hydride in optical reflectance experiments. Nat. Phys. (to be published)(2021).

    [17] J. E.Hirsch. About the pressure-induced superconducting state of europium metal at low temperatures. Physica C, 583, 1353805(2021).

    [18] J. E.Hirsch. Faulty evidence for superconductivity in ac magnetic susceptibility of sulfur hydride under pressure. Natl. Sci. Rev., 9, nwac086(2022).

    [19] J. E.Hirsch. On the ac magnetic susceptibility of a room temperature superconductor: Anatomy of a probable scientific fraud(2021).

    [20] J. E.Hirsch. Disconnect between published ac magnetic susceptibility of a room temperature superconductor and measured raw data. Preprints, 2021, 2021120115(2021).

    [21] J. E.Hirsch. Comment on ‘Room-temperature superconductivity in a carbonaceous sulfur hydride’ by Elliot Snider et al.. Europhys. Lett., 137, 36001(2022).

    [22] J. E.Hirsch, D.van der Marel. Extended comment on Nature 586, 373 (2020) by E. Snider et al.(2022).

    [23] M.Dogan, M. L.Cohen. Anomalous behavior in high-pressure carbonaceous sulfur hydride. Physica C, 583, 1353851(2021).

    [24] E. F.Talantsev. The electron-phonon coupling constant, Fermi temperature and unconventional superconductivity in the carbonaceous sulfur hydride 190 K superconductor. Supercond. Sci. Technol., 34, 034001(2021).

    [25] L.Mazov, L.Mazov. Interplay between magnetism and superconductivity in metallic hydrogen and hydrides at high pressure. EPJ Web Conf., 185, 008003(2018).

    [26] T.Wang et al. Absence of conventional room-temperature superconductivity at high pressure in carbon-doped H3S. Phys. Rev. B, 104, 064510(2021).

    [27] M.Gubler et al. Missing theoretical evidence for conventional room temperature superconductivity in low enthalpy structures of carbonaceous sulfur hydrides. Phys. Rev. Mater., 6, 014801(2022).

    [28] Y.Ding, H.-K.Mao, D.Wang. Future study of dense superconducting hydrides at high pressure. Materials, 14, 7563(2021).

    [29] V. S.Minkov et al. Magnetic field screening in hydrogen-rich high-temperature superconductors. Nat. Commun., 13, 3194(2022).

    [30] V. S.Minkov et al. The Meissner effect in high-temperature hydrogen-rich superconductors under high pressure. Research Square(2021).

    [31] M. I.Eremets et al. High-temperature superconductivity in hydrides: Experimental evidence and details. J. Supercond. Novel Magn., 35, 965(2022).

    [32] N. M.Nusran et al. Spatially-resolved study of the Meissner effect in superconductors using NV-centers-in-diamond optical magnetometry. New J. Phys., 20, 043010(2018).

    [33] A. S.Sefat et al. Superconductivity at 22 K in Co-doped BaFe2As2 crystals. Phys. Rev. Lett., 101, 117004(2008).

    [34] C. P.Bean. Magnetization of hard superconductors. Phys. Rev. Lett., 8, 250(1962).

    [35] J. D.Livingston, C. P.Bean. Surface barrier in type-II superconductors. Phys. Rev. Lett., 12, 14(1964).

    [36] A. S.Joseph, W. J.Tomasch. Experimental evidence for delayed entry of flux into a type-II superconductor. Phys. Rev. Lett., 12, 219(1964).

    [37] M.Abdel-Hafiez et al. Determination of the lower critical field Hc1(T) in FeSe single crystals by magnetization measurements. Physica C, 503, 143(2014).

    [38] M.Naito et al. Temperature dependence of anisotropic lower critical fields in (La1xSrx)2CuO4. Phys. Rev. B, 41, 4823(R)(1990).

    [39] M.Reedyk et al. Temperature dependence of the anisotropic magnetic penetration depth and lower critical field of single-crystal Pb2Sr2(Y, CA)Cu3O8+δ. Phys. Rev. B, 44, 4539(1991).

    [40] I.Troyan et al. Observation of superconductivity in hydrogen sulfide from nuclear resonant scattering. Science, 351, 1303(2016).

    [41] J. L.Tallon, W. P.Crump, E.Talantsev. Thermodynamic parameters of single- or multi-band superconductors derived from self-field critical currents. Ann. Phys., 529, 1700197(2017).

    [42] P.Thibault et al. High-resolution scanning X-ray diffraction microscopy. Science, 321, 379(2008).

    [43] F.Capitani et al. Spectroscopic evidence of a new energy scale for superconductivity in H3S. Nat. Phys., 13, 859(2017).

    [44] X.Huang et al. High-temperature superconductivity in sulfur hydride evidenced by alternating-current magnetic susceptibility. Natl. Sci. Rev., 6, 713(2019).

    [45] H.-K.Mao, L.Wang, X.-J.Chen, B.Li, Y.Ding. Solids, liquids, and gases under high pressure. Rev. Mod. Phys., 90, 015007(2018).

    [46] E. F. O’Bannon et al. Contributed Review: Culet diameter and the achievable pressure of a diamond anvil cell: Implications for the upper pressure limit of a diamond anvil cell. Rev. Sci. Instrum., 89, 111501(2018).

    [47] K.Shimizu et al. Superconductivity and structural studies of highly compressed hydrogen sulfide. Physica C, 552, 27(2018).

    [48] K.Shimizu. Investigation of superconductivity in hydrogen-rich systems. J. Phys. Soc. Jpn., 89, 051005(2020).

    [49] H.Nakao et al. Superconductivity of pure H3S synthesized from elemental sulfur and hydrogen. J. Phys. Soc. Jpn., 88, 123701(2019).

    [50] R.Akashi. Evidence of ideal superconducting sulfur superhydride in a pressure cell. JPSJ News Comments, 16, 18(2019).

    [51] A. P.Malozemoff et al. Remanent moment of high-temperature superconductors: Implications for flux-pinning and glassy models. Phys. Rev. B, 38, 6490(1988).

    [52] A. K.Grover et al. Thermomagnetic history effects in niobium and its implication for Hc1 in high Tc superconductors. Pramana, 33, 297(1989).

    [53] K. A.Müller, M.Takashige, J. G.Bednorz. Flux trapping and superconductive glass state in La2CuO4−y:Ba. Phys. Rev. Lett., 58, 1143(1987).

    [54] R.Prozorov, S. L.Bud’ko. On the analysis of the tin-inside-H3S Mössbauer experiment(2022).

    [55] E.Snider et al. Room-temperature superconductivity in a carbonaceous sulfur hydride. Nature, 586, 373(2020).

    [56] V.Struzhkin et al. Superconductivity in La and Y hydrides: Remaining questions to experiment and theory. Matter Radiat. Extremes, 5, 028201(2020).

    [57] M.Somayazulu et al. Evidence for superconductivity above 260 K in lanthanum superhydride at megabar pressures. Phys. Rev. Lett., 122, 027001(2019).

    [58] A. P.Drozdov et al. Superconductivity at 250 K in lanthanum hydride under high pressures. Nature, 569, 528(2019).

    [59] D. V.Semenok et al. Superconductivity at 253 K in lanthanum-yttrium ternary hydrides. Mater. Today, 48, 18(2021).

    [60] P.Kong et al. Superconductivity up to 243 K in the yttrium-hydrogen system under high pressure. Nat. Commun., 12, 5075(2021).

    [61] J.Gutierrez et al. First vortex entry into a perpendicularly magnetized superconducting thin film. Phys. Rev. B, 88, 184504(2013).

    [62] V. V.Moshchalkov et al. Anisotropy of the first critical field and critical current in YBa2Cu3O6.9 single crystals. Physica C, 175, 407(1991).

    [63] V.Struzhkin(2021).

    [64] V.Minkov.

    J. E. Hirsch, F. Marsiglio. Clear evidence against superconductivity in hydrides under high pressure[J]. Matter and Radiation at Extremes, 2022, 7(5): 058401
    Download Citation