• Journal of Semiconductors
  • Vol. 41, Issue 3, 032305 (2020)
Desheng Zeng1、2, Li Zhong1, Suping Liu1, and Xiaoyu Ma1、2
Author Affiliations
  • 1National Engineering Center for Optoelectronic Device, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
  • 2University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    DOI: 10.1088/1674-4926/41/3/032305 Cite this Article
    Desheng Zeng, Li Zhong, Suping Liu, Xiaoyu Ma. Analysis of the time domain characteristics of tapered semiconductor lasers[J]. Journal of Semiconductors, 2020, 41(3): 032305 Copy Citation Text show less

    Abstract

    We use traveling wave coupling theory to investigate the time domain characteristics of tapered semiconductor lasers with DBR gratings. We analyze the influence of the length of second order gratings on the power and spectrum of output light, and optimizing the length of gratings, in order to reduce the mode competition effect in the device, and obtain the high power output light wave with good longitudinal mode characteristics.
    $ \left( {\frac{1}{{{{{v}}_{\rm{g}}}}} \frac{\partial }{{\partial t}} + \frac{\partial }{{\partial z}}} \right)R = [g - a - \varepsilon (z)]R + [i \kappa (z) - \varepsilon (z)]S + {\Phi _{\rm{R}}} \tag{1a},$ ()

    View in Article

    $ \left( {\frac{1}{{{{{v}}_{\rm{g}}}}} \frac{\partial }{{\partial t}} - \frac{\partial }{{\partial z}}} \right)S =[g - a - \varepsilon (z)]S + [i \kappa (z) - \varepsilon (z)]R + {\Phi _{\rm{S}}} \tag{1b},$ ()

    View in Article

    $ {{g}}(t,z) = \frac{{G(z,t)}}{2} (1 - i \alpha ), $ (2)

    View in Article

    $ G(z,t) = A (N(z,t) - {N_0}), $ (3)

    View in Article

    $\begin{split} & \left\langle {{\Phi _i}(z,t){\Phi _i}(z',t')} \right\rangle = \delta (z - z') \frac{{{\text{π}} \Delta \upsilon }}{2}{{\rm{e}}^{ - {\text{π}} \Delta \upsilon \left| {t - t'} \right|}} \\ & \qquad\!\! \qquad\qquad\qquad \times (G {n_{\rm{sp}}}(z) hv \frac{{{w_{\rm{act}}}}}{{{W^2}}}), \end{split}$ (4)

    View in Article

    $ {n_{\rm{sp}}}(z) = \frac{1}{{1 - \exp \left\{ {[{{hv + {E_{\rm{FV}}}(z) - {E_{\rm{FC}}}(z)]} / {{k_{\rm{B}}}T}}} \right\}}}. $ (5)

    View in Article

    $ \frac{{\partial N(z,t)}}{{\partial t}} = \frac{{{\eta _i}}}{e}J(z,t) - \Re (N) - \frac{G}{{hv}}({\left| R \right|^2} + {\left| S \right|^2}), $ (6)

    View in Article

    $\begin{array}{l} R(t + \Delta t,z + \Delta z) - R(t,z)\\ \;\;= R(t + \Delta t,z + \Delta z) - R(t,z + \Delta z) + R(t,z + \Delta z) - R(t,z)\\ \;\; = \dfrac{{\partial R}}{{\partial t}}\left| {_{z + \Delta z} } \right.\Delta t + \dfrac{{\partial R}}{{\partial z}}\left| {_t} \right. \Delta z\\ \;\; = \dfrac{{\partial R}}{{\partial t}}\left| {_{z + \Delta z}} \right. \Delta t - \dfrac{{\partial R}}{{\partial t}}\left| {_z} \right. \Delta t + \dfrac{{\partial R}}{{\partial t}}\left| {_z} \right. \Delta t + \dfrac{{\partial R}}{{\partial z}}\left| {_{\Delta t} \Delta z} \right. \\ \;\; = \dfrac{{{\partial ^2}R}}{{\partial {z^2}}} {v_{\rm{g}}} \Delta t \Delta z + \left( {\dfrac{1}{{{v_{\rm{g}}}}} \dfrac{{\partial R}}{{\partial t}} + \dfrac{{\partial R}}{{\partial z}}} \right) \Delta z. \end{array}$()

    View in Article

    $ R(k + 1,m + 1) = R(k,m) + \Delta z {\Psi _R}, \tag{7a}$ ()

    View in Article

    $ S(k + 1,m - 1) = S(k,m) + \Delta z {\Psi _S}, \tag{7b}$ ()

    View in Article

    $ \frac{{\rm{d}}}{{{\rm{d}}z}}\left[ {\begin{array}{*{20}{c}} {\bar R}\\ {\bar S} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {g - a - \varepsilon } & {i \kappa - \varepsilon }\\ { - i \kappa + \varepsilon } & { - g + a + \varepsilon } \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {\bar R}\\ {\bar S} \end{array}} \right]. $ (8)

    View in Article

    $ \left[ {\begin{array}{*{20}{c}} {\bar R(z + \Delta z)} \\ {\bar S(z + \Delta z)} \end{array}} \right] = \exp (\tilde M \Delta z)\left[ {\begin{array}{*{20}{c}} {\bar R(z)} \\ {\bar S(z)} \end{array}} \right], $ (9)

    View in Article

    $ \left[ {\begin{array}{*{20}{c}} {\bar R(z - \Delta z)} \\ {\bar S(z - \Delta z)} \end{array}} \right] = \exp (\tilde M ( - \Delta z))\left[ {\begin{array}{*{20}{c}} {\bar R(z)} \\ {\bar S(z)} \end{array}} \right]. $ (10)

    View in Article

    $ {{\bar R}_{{{m}} + 1}} = {F_{11}} {{\bar R}_{{m}}} + {F_{12}} {{\bar S}_{{m}}}, \tag{11a}$ ()

    View in Article

    $ {{\bar S}_{{{m}} - 1}} = {B_{21}} {{\bar R}_{{m}}} + {B_{22}} {{\bar S}_{{m}}}. \tag{11b}$ ()

    View in Article

    $ R_{{{m}} + 1}^{k + 1} = {F_{11}}R_{{m}}^k + {F_{12}}S_{{m}}^k + {\Phi _R} \Delta z, \tag{12a}$ ()

    View in Article

    $ S_{{{m}} - 1}^{k + 1} = {B_{21}}R_{{m}}^k + {B_{22}}S_{{m}}^k + {\Phi _S} \Delta z. \tag{12b}$ ()

    View in Article

    $ {R_{{{m}} = 1}} = {r_{\rm b}} {S_{{{m}} = 1}}, \tag{13a}$ ()

    View in Article

    $ {S_{{{m}} = {{n}}}} = {r_{\rm{f}}} {R_{{{m}} = {{n}}}}, \tag{13b}$ ()

    View in Article

    $ N_{{m}}^{k + 1} = N_{{m}}^k + \Delta t \cdot \Im , $ (14)

    View in Article

    Desheng Zeng, Li Zhong, Suping Liu, Xiaoyu Ma. Analysis of the time domain characteristics of tapered semiconductor lasers[J]. Journal of Semiconductors, 2020, 41(3): 032305
    Download Citation