• Acta Optica Sinica
  • Vol. 43, Issue 7, 0723002 (2023)
Huajiang Yuan, Chonglei Sun, and Jia Zhao*
Author Affiliations
  • School of Information Science and Engineering, Shandong University, Qingdao 266237, Shandong , China
  • show less
    DOI: 10.3788/AOS221754 Cite this Article Set citation alerts
    Huajiang Yuan, Chonglei Sun, Jia Zhao. High-Speed Hetero-Doped Silicon-Based Slot Waveguide Modulator[J]. Acta Optica Sinica, 2023, 43(7): 0723002 Copy Citation Text show less
    Modulator structure with a single-drive push-pull electrode
    Fig. 1. Modulator structure with a single-drive push-pull electrode
    Cross section of modulator with heteromorphic doped slot waveguide
    Fig. 2. Cross section of modulator with heteromorphic doped slot waveguide
    Normalized fundamental optical mode distribution in slot waveguide
    Fig. 3. Normalized fundamental optical mode distribution in slot waveguide
    Carrier distribution on pn junction cross section at 0 V and 2 V. (a) 0 V; (b) 2 V
    Fig. 4. Carrier distribution on pn junction cross section at 0 V and 2 V. (a) 0 V; (b) 2 V
    Optical transmission loss and phase shift under different bias voltages. (a) Optical transmission loss; (b) phase shift
    Fig. 5. Optical transmission loss and phase shift under different bias voltages. (a) Optical transmission loss; (b) phase shift
    Junction capacitance at different bias voltages
    Fig. 6. Junction capacitance at different bias voltages
    T-shape electrode structure (W=50 μm, T=12 μm, dgap=15 μm, P=90 μm) and equivalent circuit model of the loaded transmission line. (a) Electrode structure; (b) equivalent circuit model
    Fig. 7. T-shape electrode structure (W=50 μm, T=12 μm, dgap=15 μm, P=90 μm) and equivalent circuit model of the loaded transmission line. (a) Electrode structure; (b) equivalent circuit model
    Simulated value of electrode equivalent circuit. (a) Capacitance per unit length; (b) inductance per unit length; (c) resistance per unit length; (d) loss per unit length
    Fig. 8. Simulated value of electrode equivalent circuit. (a) Capacitance per unit length; (b) inductance per unit length; (c) resistance per unit length; (d) loss per unit length
    Electrode impedance and refractive index with unloaded and loaded pn junction. (a) Impedance; (b) refractive index
    Fig. 9. Electrode impedance and refractive index with unloaded and loaded pn junction. (a) Impedance; (b) refractive index
    Electrode loss and 3 dB electro-optic bandwidth under different bias voltages. (a) Electrode loss; (b) electro-optic bandwidth
    Fig. 10. Electrode loss and 3 dB electro-optic bandwidth under different bias voltages. (a) Electrode loss; (b) electro-optic bandwidth
    Optical transmission spectra and modulation efficiency of 3 mm long modulator under different bias voltages. (a) Optical transmission spectra; (b) modulation efficiency
    Fig. 11. Optical transmission spectra and modulation efficiency of 3 mm long modulator under different bias voltages. (a) Optical transmission spectra; (b) modulation efficiency
    70 Gbit/s OOK modulation eye diagrams with Vpp=2 V. (a) Slot WG; (b) traditional rib WG
    Fig. 12. 70 Gbit/s OOK modulation eye diagrams with Vpp=2 V. (a) Slot WG; (b) traditional rib WG