• Photonics Research
  • Vol. 13, Issue 5, 1353 (2025)
Ye Lu1, Yinpeng Hu1, Qian Ma1, Yunzhi Liu1..., Jiayue Zhu1, Huan Li1,2,4,* and Daoxin Dai1,2,3,5,*|Show fewer author(s)
Author Affiliations
  • 1State Key Laboratory of Extreme Photonics and Instrumentation, Center for Optical & Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Zijingang Campus, Hangzhou 310058, China
  • 2Jiaxing Key Laboratory of Photonic Sensing & Intelligent Imaging, Intelligent Optics & Photonics Research Center, Jiaxing Research Institute, Zhejiang University, Jiaxing 314000, China
  • 3Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
  • 4e-mail: lihuan20@zju.edu.cn
  • 5e-mail: dxdai@zju.edu.cn
  • show less
    DOI: 10.1364/PRJ.545740 Cite this Article Set citation alerts
    Ye Lu, Yinpeng Hu, Qian Ma, Yunzhi Liu, Jiayue Zhu, Huan Li, Daoxin Dai, "Fully reconfigurable silicon photonic MEMS microring resonators for DWDM," Photonics Res. 13, 1353 (2025) Copy Citation Text show less
    References

    [1] C. Li, X. Zhang, J. Li. The challenges of modern computing and new opportunities for optics. PhotoniX, 2, 20(2021).

    [2] T. H. Szymanski. Securing the industrial-tactile internet of things with deterministic silicon photonics switches. IEEE Access, 4, 8236-8249(2016).

    [3] Q. Cheng, M. Bahadori, M. Glick. Recent advances in optical technologies for data centers: a review. Optica, 5, 1354-1370(2018).

    [4] W. Zhao, Y. Peng, X. Cao. 96-Channel on-chip reconfigurable optical add-drop multiplexer for multidimensional multiplexing systems. Nanophotonics, 11, 4299-4313(2022).

    [5] Y. Guo, X. Li, M. Jin. Hybrid integrated external cavity laser with a 172-nm tuning range. APL Photonics, 7, 066101(2022).

    [6] E. Luan, S. Yu, M. Salmani. Towards a high-density photonic tensor core enabled by intensity-modulated microrings and photonic wire bonding. Sci. Rep., 13, 1260(2023).

    [7] J. B. Khurgin, P. A. Morton. Tunable wideband optical delay line based on balanced coupled resonator structures. Opt. Lett., 34, 2655-2657(2009).

    [8] M. Wang, X. Chen, U. Khan. Programmable wavelength filter with double ring loaded MZI. Sci. Rep., 12, 1482(2022).

    [9] S. Liu, J. Feng, Y. Tian. Thermo-optic phase shifters based on silicon-on-insulator platform: state-of-the-art and a review. Front. Optoelectron., 15, 9(2022).

    [10] H. Yu, W. Bogaerts, A. De Keersgieter. Optimization of ion implantation condition for depletion-type silicon optical modulators. IEEE J. Quantum Electron., 46, 1763-1768(2010).

    [11] M. J. Strain, C. Lacava, L. Meriggi. Tunable Q-factor silicon microring resonators for ultra-low power parametric processes. Opt. Lett., 40, 1274-1277(2015).

    [12] J. Leuthold, C. W. Joyner. Multimode interference couplers with tunable power splitting ratios. J. Lightwave Technol., 19, 700-707(2001).

    [13] P. Orlandi, F. Morichetti, M. J. Strain. Tunable silicon photonics directional coupler driven by a transverse temperature gradient. Opt. Lett., 38, 863-865(2013).

    [14] C. L. Manganelli, P. Pintus, F. Gambini. Large-FSR thermally tunable double-ring filters for WDM applications in silicon photonics. IEEE Photonics J., 9, 6600310(2017).

    [15] H. Sun, Q. Qiao, J. Xia. Mid-infrared silicon photonic phase shifter based on microelectromechanical system. Opt. Lett., 47, 5801-5803(2022).

    [16] H. Sun, Q. Qiao, C. Lee. MEMS-enabled ultralow power consumption programmable arbitrary order mode switch. Laser Photonics Rev., 19, 2400641(2024).

    [17] A. Y. Takabayashi, D. Silva, H. Sattari. Compact integrated silicon photonic MEMS power coupler for programmable photonics. IEEE 35th International Conference on Micro Electro Mechanical Systems Conference (MEMS), 216-219(2022).

    [18] P. Edinger, A. Y. Takabayashi, C. Errando-Herranz. Silicon photonic microelectromechanical phase shifters for scalable programmable photonics. Opt. Lett., 46, 5671-5674(2021).

    [19] D. U. Kim, Y. J. Park, D. Y. Kim. Programmable photonic arrays based on microelectromechanical elements with femtowatt-level standby power consumption. Nat. Photonics, 17, 1089-1096(2023).

    [20] S. Gyger, J. Zichi, L. Schweickert. Reconfigurable photonics with on-chip single-photon detectors. Nat. Commun., 12, 1408(2021).

    [21] M.-C. M. Lee, M. C. Wu. Variable bandwidth of dynamic add-drop filters based on coupling-controlled microdisk resonators. Opt. Lett., 31, 2444-2446(2006).

    [22] J. Yao, M. C. Wu. Bandwidth-tunable add–drop filters based on micro-electro-mechanical-system actuated silicon microtoroidal resonators. Opt. Lett., 34, 2557-2559(2009).

    [23] Y. Kanamori, Y. Sato, K. Hane. Fabrication of silicon microdisk resonators with movable waveguides for control of power coupling ratio. Jpn. J. Appl. Phys., 52, 06GL19(2013).

    [24] H. M. Chu, K. Hane. A wide-tuning silicon ring-resonator composed of coupled freestanding waveguides. IEEE Photonics Technol. Lett., 26, 1411-1413(2014).

    [25] H. Sattari, A. Y. Takabayashi, P. Edinger. Silicon photonic microelectromechanical systems add-drop ring resonator in a foundry process. J. Opt. Microsyst., 2, 044001(2022).

    [26] C. Errando-Herranz, F. Niklaus, G. Stemme. A low-power MEMS tunable photonic ring resonator for reconfigurable optical networks. 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS), 53-56(2015).

    [27] T. Ikeda, K. Hane. A tunable notch filter using microelectromechanical microring with gap-variable busline coupler. Opt. Express, 21, 22034-22042(2013).

    [28] P. Edinger, G. Jo, C. P. Van Nguyen. Vacuum-sealed silicon photonic MEMS tunable ring resonator with an independent control over coupling and phase. Opt. Express, 31, 6540-6551(2023).

    [29] M. G. Lim, Y. J. Park, D. J. Choi. Fully reconfigurable MEMS-based second-order coupled-resonator optical waveguide (CROW) with ultra-low tuning energy. Opt. Express, 31, 40166-40178(2023).

    [30] M. G. Lim, D. U. Kim, Y. J. Park. Controlling four-wave mixing through full tunability of MEMS-based photonic molecules. ACS Photonics, 11, 3502-3510(2024).

    [31] A. Säynätjoki, L. Karvonen, T. Alasaarela. Low-loss silicon slot waveguides and couplers fabricated with optical lithography and atomic layer deposition. Opt. Express, 19, 26275-26282(2011).

    [32] J. Capmany, D. Pérez. Programmable Integrated Photonics(2020).

    [33] W. Bogaerts, P. De Heyn, T. Van Vaerenbergh. Silicon microring resonators. Laser Photonics Rev., 6, 47-73(2012).

    [34] G. Priem, P. Dumon, W. Bogaerts. Optical bistability and pulsating behaviour in silicon-on-insulator ring resonator structures. Opt. Express, 13, 9623-9628(2005).

    [35] M. Aspelmeyer, T. J. Kippenberg, F. Marquardt. Cavity optomechanics. Rev. Mod. Phys., 86, 1391-1452(2014).

    [36] W. Bogaerts, D. Pérez, J. Capmany. Programmable photonic circuits. Nature, 586, 207-216(2020).

    Ye Lu, Yinpeng Hu, Qian Ma, Yunzhi Liu, Jiayue Zhu, Huan Li, Daoxin Dai, "Fully reconfigurable silicon photonic MEMS microring resonators for DWDM," Photonics Res. 13, 1353 (2025)
    Download Citation